Random Matrix Theory (RMT)

Semyon Malamud

EPFL



What is Random Matrix Theory (RMT)?

» Mathematical formalism to study high-dimensional random matrices.

» As of today, it is probably the right mathematical language for understanding
Machine Learning.

» In high dimensions, stuff tends to “concentrate” and “simplify”



Concentration Phenomena: The Hidden Order in
High-Dimensional Reality i

Suppose X; € RF are i.i.d., with i.i.d. coordinates. Then, Xi+ is wild and i.i.d. But,

p
PHIX|? = P Y XE ~ E[X] (1)

i=1
There are more general concentration inequalities of this sort:

Meta-Theorem For good functions f,

lim (f(X:) — E[f(X:)]) — 0 (2)

P—oo
in probability. This is a Law of Large Numbers in P (and not in T!)
- FRandomMarrx TheOY RMT)



Concentration Phenomena: The Hidden Order in
High-Dimensional Reality ii

Click Here if You are Curious: Concentration Inequalities

Where are the traces of concentration in financial data? Where are the i.i.d.,
high-dimensional observations? Where is the hidden order?


https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/Scribe-Lecture-10.pdf

Some Linear Algebra i

» A symmetric matrix U € RP*P admits a spectral decomposition
W = UDU/, D = diag(\)).
» W is positive definite if and only if \; > 0.

>
tr(AB) = tr(BA) (3)

tr(A) = > AF (4)



Some Linear Algebra ii

» Frobenius Norm
A3 = Y A% = tr(A) § A7 (5)
iJ

» Trace Norm

Al = 3 Ixd ()

» Spectral norm
1Al = max|Aif = max||Ax[|/[|x]]

» Big and Small Matrices: A= [/P : Big or Small?
1Al =1/P, Al = 1, [Al; = P (7)
- FRandomMarrx Theoy’RMT)



Concentration of Quadratic Forms: Heuristic i

Assumption We have S, € R” given by S, = W}D/th, where X; € R” have i.i.d.
coordinates, X;,, with E[X;.] =0, E[X?,] =1, E[X},] < <.

E.g., S~ N(0,Vp).

Theorem 1 (Pseudo-Theorem)
When P is large,

P-1SIAS, ~ P~1tr(AV)



Concentration of Quadratic Forms: Heuristic ii

The intuition behind this lemma is particularly clear for the case ¥ =/ (i.e., signals S; ;
are i.i.d. across 7). Indeed, when P is large, a "law-of-large-numbers-in-P" implies that

P~1SIAS, = P_le;,t i tAi
i

P
_ -1 § 2
— P SI,tA’J
i=1
~P-13°F A because ElSA =l

+ PilZSI,t i tAij
i#)

~
~0 because E[S;;S; :]=0

P
PIY A = Phtr(A).
=1

Q



Concentration of Quadratic Forms: Rigorous i

Lemma 2 (Concentration of Quadratic Forms)
Let A be a uniformly bounded matrix and let

Then,
Var[P~'Y,] < C||A|IP! (10)

for some constant C = C(||W||). Hence,

PY, ~ E[PLY,] = P ltr(AV). (11)



Proof i

For simplicity, we assume W = [ so that S; = X;. Then,
Yo = > XiXAy (12)
i

and therefore

ElY] = EXAX] = ED_XiXAil = D EXXA; = ) oA, (13)
i

i ioj

and
E[Ytz] = Z E[Xf1)<j1Af1J1Ai2,j2Xf2XJ'2]' (14)

11,J1512,J2



Proof

Now, among all fourth-order moments, E[X; X}, X;, X,], the only non-zero moments are
those where either all are identical, i; = i, = iz = iy, or when there are exactly two
identical pairs. The latter can happen in exactly 3 ways. First,

(h = h,j1 = J2), (h =2, /1 = ia) give rise to the terms A?M-1 because, by assumption, A
is symmetric, so that A;, j = Aj, ;. Second, (i = ji, b = j») gives rise to A; jA; .



Thus,
EIYZ = D> AuiAuiELX XX, X,]

1J1,2,J2
= Z ALEX] + Z (247 + AiiA;j)
i iy
= Y AEX+ D> 28 = > AL+ O AL (15)
i i jyii i i

= ZA%,E[X,“]—22A%,+Z2Aﬁj = > A+ O ALY
' ' i.j i i
= ZA (E[X'T—3) + 2]Al; + (tr(A))?
Thus, since E[Y;] = tr(A), we have
E[Y?] - E[Yi]* = ZA (E[X'1=3) + 2JAll; < (E[XT1-DIAlz  (16)



because

2{:’4ii < EE:‘Aij - |L4H§7
i ij



Correlated Case

Homework Use the uncorrelated case Y; = X/ApX; to prove the analogous result for
the correlated case Y, = S!ApS; with S, = W'/2X,.



So What Can We Learn from One Observation?

We have

P~1SIAS, ~ P ltr(VA).
So, measuing it for many A gives us everything we need to know about W?
S; has P dimensions, ¥ has P? dimensions??

Beware of multiple testing!!

(18)



Sample Covariance Matrix i

» Empirical covariance

-
a 1
U = ?Zstsg e RP*P (19)
t=1
is an unbiased estimator
Howework:
EV] = w. (20)
Howework:
E[W?] = w2 + bias (21)



Sample Covariance Matrix ii

» Ridge regression

B = (z8 + W)~ ZSth (22)

We want to understand W

>
» It is a high-dimensional Random Matrix
» |s there a hidden structure inside it?

>

Eigenvalue decomposition

A

v = 0DU (23)
» Eigenvectors U are poorly understood

» Eigenvalues D are much better understood



Stieltjes Transform and the Eigenvalue Distribution i

> A key object of RMT is the eigenvalue distribution Ha(x) of a symmetric matrix
A c RPXP .

P
1
x) = lex<)\,‘(/4)7 (24)
i=1

where \;(A) are the eigenvalues of the matrix A.

» It is encoded in the Stieltjes Transform
my(—2z) = P ltr((z2l + W)™ ), z>0, (25)

because

P~ tr((zl + W)™Y) = Plz ((z 4+ Ni(W ):/ ! dHy(A).  (260)



Stieltjes Transform and the Eigenvalue Distribution ii

» Of course, my is not observable! We need to work with its sample counterpart
m(—z) = P ttr((zl +¥)Y), z>0 (27)

» It turns out that the key determinant of its behavior is complexity ¢ = P/ T.

» When ¢ — 0, we have (see below)
m(—z) =~ my(—z2) (28)

» When ¢ > 0, this is not the case. A striking discovery of the RMT is that there is a
universal way of linking m to m via a fixed point equation.



Stieltjes Transform and the Eigenvalue Distribution iii

Theorem 3 (Bai and Zhou (2008))

For each z > 0,
lim m(—z) = m(—z;c) (29)

T,P—oc0,P/T—c

exists in probability and m(—z; c) is the unique positive solution to the nonlinear
master equation

m(—z:c) . me ( —Z ) . (30)

"1 - ¢+ czm(-z¢) 1 —c+ czm(-z¢c)

Understanding Marcenko-Pastur


https://colab.research.google.com/drive/1zEIkDpNHHxGfpe24dpqSDSxhFwb_6bOr

Homework

» Howework: Derive m in closed form when W = [ (this is the Marcenko-Pastur
Theorem)
» Howework: Derive m in closed form when W has just two eigenvalues A\;, A,. What

else matters in addition to Ay, A»?

Click the button to reveal hidden content:

» Solving The Master Equation



Table of Contents

1 The Master Theorem of RMT



Implicit Regularization i

Define the implicit shrinkage

z

Z(zic) = 1 — ¢+ czm(-zc)



Implicit Regularization ii

Theorem 4
We have
zm(—z;c) = ZJz;¢c) m(—Z.(z;c)) (32)
That is, (zI + )~ behaves as if we are doing (Z,I + W)~ 1.
Furthermore, )
xdH(x
z —z+cZ*/X+Z* (33)
so that
Z, € [z, z+ (]. (34)



Implicit Regularization iii

Formally, in finite samples,

X+ Z,

= z+1lmcZP > N/(\i+ Z)

~ z + Z*;Pltr(\ll(\ll+2*)1)
=z + ZT (VW +2Z))



The Master Theorem of RMT

Theorem 5
We have
>
Bz(zl +U)8 - BZ(ZI+ V)8 (36)

>

1 =il -1 =1

Pltr(A z(zl +V)™) = P (A Z(ZJ+ V) (37)

PxP PxP

for any bounded Al!l



Table of Contents

2 Proof of the Master Theorem



Sherman-Morrison i

Lemma 6 (Sherman-Morrison Formula)

Suppose A € R™" js an invertible square matrix and u, v € RF are column vectors.
Then A+ uV' is invertible if 1 + v'A=Yu # 0. In this case,

A ltuy/A1

(A == UV/)_1 =Al— m (38)
and 1
(A aF uv’)*lu = Aflu m (39)

Homework: Prove Sherman-Morrison.



Concentration of Stieltjes Transform

Lemma 7

We have
P tr(Qp(zl + V7)™ ~ P LE[tr(Qp(zl + Wr)™Y)] (40)

almost surely for any sequence of uniformly bounded matrices Qp.

What does this mean, and why is this striking?

> Vs is very random
» (z1 + )1 is very random (but bounded)
Homework: Prove that ||(z/ + W)t < z7!.
» But P~1tr((z/ + W7)™1) is not random
» P 1tr(Qp(zl + Wr)™1) is also not random for any Q
- FRandomMarrix TheyRMT)



[Proof of Lemma 7] The proof follows by the same arguments as in Bai and Zhou
(2008). Let Wy, =+ > 72t 575, By the Sherman-Morrison formula

(Z/ + lII\JT)_l
N 1 A o 1
=(zl + V7)™t — Z(2 + V7 ,)iSS(zl + Vg )t - .
( i) 7 ) 5ei e (T)-1SU(zl + Wr,)-1S,
(41)
Let E; denote the conditional expectation given Sy, --- | S;. Let also
1 N
qgr(z) = Ftr((zl + V) Qp).
With this notation, since \TJT,t is independent of S;, we have
1 N 1 A
Et[E tr((zl +Vr,) 'Qp)] = E[ﬁ tr((zl + V1) ' Qp)|St, -+, See1, St
(42)

1 A 1 A
= E[ﬁ tr((z/ + \UT,t)_lQP)|51, e, 5] = Et—l[E tr((zl + WT,t)_lQP)] -



Formally, we can rewrite this as

(Ec— Ee)[2

P

tr((zf + V) Q)]

= 0.



Therefore,

Elgr(2)] - qr(2) = Elar(2)] - Erlar(2)] = > (Eealar(2)] - Elar(2)])

telescope sum t=

= Y (B — E)lgr(2)]

]~

(Ee-x — Ed)lar(2)] — (Ee-1 — Er)[%tr((zl +Wr) 7 Qp)]

1 Vv

=0: we subtracting z

t

— Z (E._ 1—Et)[tr((zl+\ll ) Qp) —tr((l + V1) ' Qp)]

—ar

1 T
= ZEtl—Et[’Yt]

t=1




Let

1
0 = —F(Etfl — E)lve] = Eealgr(z)] — Elgr(2)] (45)
be the martingale differences for the martingale M, = E;[q7(z)], where we have used

(50) and defined

1 ~ 1 o .
"Vt = tr (?(ZI + WT7t)_15t(1 ‘l‘ ?5{,(2/ + \I}Ti)_lst)_lS;(Zl + WT7t)_lQP>

(46)

Si(zl + V7)1 Qpi(zl + Uy ,)1S,
~~ (1+ 1Si(zl + V7)1,

cyclicality of trace

We will need the following

Homework



Lemma o

X' ABAx| < ||AY2BAY?|| X' Ax (47)
for any positive definite A.
Let
g = sup|Qpll.
P
Then,

|,y ’ _ ‘SI/,(Z/ + \,I)T’t)_lQP%(ZI + ®T,t)_15t|
' (1+ LSzl + Ur,)1S,)

Using (47) with x = S;, A= T Yzl +U,)"!, B = Qp, we get

(48)

|x' ABAX| s |x' Ax|
— 27 < A2gat/? | 22
el 14+ x'Ax — | H1—5—X’Ax

< ||AVZBAYZ| < JAIIBl < z7'qu.



Thus, the margingale differences satisfy

1
|0¢| = |E(Et71_Et)[’Yt]| < P YEA[%l] + Ellvl) < 2Pz ..

We first prove a weaker form of our result.

Proposition 1
E[(Elgr(2)] — ar(2))] < P2T(2z7'q.)* and, hence, E[g7(2)] — g7(z) — 0'in
probability when P=2T — 0.

The claim follows directly from the Ito isometry
El(qr — Elar])’] = E[D_ 4]
t

Homework: Prove this.



It turns out, however, that a more powerful result holds.

Theorem 9 (Burkholder-Davis-Gundy Inequality)
For any q > 2, where exists a K, > 0 such that

q/2
El(ar — Elar])?] < K,E (Z&)

Thus,
El(gr — Elqr])7] < KP9T92(2271q.)" (49)

Almost sure convergence follows with g > 2 from the following lemma.



Lemma 10
Suppose that
E[[Xr|7] < T

for some o« > 1 and some q > 0. Then, X+ — 0 almost surely.

Proof.
It is known that if .
Z Prob(|X7| >¢) < oo
T=1
for any ¢ > 0, then X7+ — 0 almost surely. In our case, the Chebyshev inequality
implies that
Prob(|X7| >¢) < e 9E[|X7|] < 79T ¢

and convergence follows because &« > 1. =



The proof of the Lemma 7 is complete.



The ¢ function i

» 99% of proofs in RMT use Sherman-Morrison:
> let Wy, = % E#t S.S.. By the Sherman-Morrison formula

(2 + U )™t
=(zd+Ur,)"t — i(z/ + WUy )71S.Si(zl + Uy ) 7! L :
’ T ’ 14 (T) LSzl + Wr LS,
(50)
» The quantity
(T)71S(zl + Wr,)7tS, (51)

appears everywhere.



The £ function i

» Concentration of Quadratic Forms implies
T1S/(z + @T,t)*lst = cPttr(S)(z + \TJTJ)ASt)
Pt tr((2l + Wr ) E[S:S]) (52)

~
~

P ttr((zl + V1) S,S))
—

LLN

= P tr((zl + Ur )t
(53)

» Question:
lim T tr((zl + V7 ,) " k\ll )

nown

x



The ¢ function Characterization i

Proposition 2

We have 1

lim —tr((zl + ¥U)7W) = &(z;0) (54)

T—oo T
almost surely, where

v l—=zm(-zc)
S(zie) = cl—1+4+2zm(—z;¢c)
Intuition:
First, for large T,
lim T tr((zl + W) 7'W) = limcP L tr((2l + Up) v (55)



The ¢ function Characterization i
Second, ¥ ~ W and hence,

P ltr((zl + V7)) ~ P ltr((zl + Up) W)
= P ltr((zl +Vp) Y=zl + 2zl + V7))

1 -1 0 1 0 (56)
= P htr((zl + V) Nzl + V7)) — zP M tr((zl + V7))
=1—-zm(-z) - 1 — zm(—z;¢c).

But this is wrong! The right expression is
1—zm(—2z;¢) (57)

cl—1+2zm(—z;c)



The ¢ function Characterization iii

» Let

A 1 ,
Vre == ; S.S. (58)

Then, by the Sherman-Morrison formula (50),

(zl + U 7)71S, = (21 + U7 ,)7LS,
1
+(T)-1Si(zl + Wr,)-1S,  (59)

1 A A
— ?(ZI + \U-ryt)_lstS;(Z/ + \UTvt)_lstl

1
1 + (T)_IS£(Z/ -+ l,I:]T77f)_1~st '

= (ZI + {I\jTyt)ilst



The ¢ function Characterization iv

» By concentration,
P18zl +WUr)7tS, — PR ur(W(zl + V)™ — 0 (60)
in probability. At the same time, by Lemma 7,
P ltr(W(zl +Wr )Y — E[Prtr(W(zl + V7)™ )] — 0
almost surely. Thus,
P18zl + Wy )7tS, — E[P Y tr(W(zl + VU1 ,)™Y)] — 0 (61)

is probability and
P trE[(zl + V7)Y = m(—z¢) (62)
- FRandomMarrx They RMT)



The ¢ function Characterization v

» Now, we have

1= P YtrE[(zl +Uy) 7 (2l + V)]
i E[(zl + V1) Yz + P_ltrE[(z/ + U)o

= zim(—z) + P YtrE[(zl + V) ZStSI

— {symmetry across t} = zm(—z,c) + P ttrE[(zl + ¥1)71S,.S)] (63)
= {using Sherman — Morrison (59)}
1 /
o o il
1 + (T) St(Z/ + \UT71_-) St
P1S(zl + Wr,)tS, |
1+ (T)1Si(zl + Vr,) 1S,
- FRandomMarrx They RMT)

= zm(—z) + P LtrE[(zl + Vr,)7tS,

= zm(—z) + EJ




The ¢ function Characterization vi

Now, E[T 1tr(W(zl +W1,)™1)] < |||z~ and hence is uniformly bounded. Let
us pick a subsequence of T converging to infinity and such that
E[T1tr(W(zl + V1 ,)"1)] = g for some g > 0. By (60),

P~1S!(zl + W1 ,)1S, . c g
1+ (T)"1Si(zl + Wr,)-1S, l1+gq

in probability, and this sequence is uniformly bounded. Hence,

E[ P_lst/.(Z/ +®T’f)_15t ] _ C_lq
1+ (T) S5zl + Vr.e) 'S 1+gq
and we get
c g
1-— —z,C) = .
zm(—2z,c) e



The ¢ function Characterization vii

Thus, the limit of £(z; c) = E[Ttr(V(z/ + Wr,)!)] is independent of the
subsequence of T and satisfies the required equation.

The proof of Proposition 3 is complete.



Marcenko-Pastur

1 —zm(-2z;c)
ct—1+zm(—zc)’ (64)

&(z;¢) = lim T tr(W(zl + Uy ,)™h) =
m(—z;¢) = limP Y tr((zl + V7 ,)™Y)

For W = 02/, we get
£(z;c) = co’m(—z;c). (65)

This gives a quadratic equation for m:

1—zm(—2z;c)
cl—1+4+zm(-z¢c)’

o’m(—z;c) =




Proposition 3

We have

1 ~
lim = tr((zl + V)W) — £(z;¢) (67)
T—oo T
almost surely, where
 l—zm(-zc)
S(zie) = cl—1+2zm(—z;¢c)
Similarly,
1 A
lim =tr((zl +W)72VW) — —¢(z;¢) (68)
T—oo |
almost surely, where
d 1—zm(—2z;¢)
1. _ < 1
§lzic) = dz (c—l — 14 zm(—z; c)) ' (69)
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3 Ridge Regression



Data Generating Process i

Assumption 1

There exists a vector 3 € RF such that
dey1 = 'Se + €41, =0,--- ,t+1, (70)

where Ele;11] = 0, E[e?,,] = 02, E[et 1] < oo areiid., and S, = WY2X,, where
Xe = (Xi,¢) where E[X; ] =0, E[X?] =1, E[X{] < oo are i.id., and V = E[S,S]] is
p.s.d. and bounded.

Below, we frequently use the convenient matrix notation d = (d,)!_,, and



Data Generating Process ii

By (70), the total variance of dr;; admits the standard decomposition

Var[dri1] = sV + o2 : (71)
—— ~—
explained variance irreducible noise

An econometrician knowing the true 3 would then achieve the infeasible R? given by

R2 e
' BB + o2

infeasible —

1 (72)



Ridge Estimator Decomposition i

Ba) = (@ + 022
= (2 + @)*1—5/(55+5)
T
o Y (73)
= (21 + V)3 + (21 + xu)lS—T6
infor?nration S ~

noise

#r(z) = Br(z)Sr

be the ridge estimator.



Ridge Estimator Decomposition ii

Our goal is to characterize the out-of-sample behavior:

Er|(dr41 — 7ATT(Z))2} =Er [(6,57- TETHL B(Z)/ST)2]
= Er[e3,1 + (85t — A2)'S7Y] (74)
= o2 + Er[(#'S7 — B(2)'SrY?].

Note that 3'S — 3(z)'St = (8 — B(2))'Sr. Taking expectations and using
Et [STS%] = W, we obtain

Er[((8 - B2)YSr)?] = (8- B2)YW(B - B(2)). (75)



Ridge Estimator Decomposition iii

Thus, the out-of-sample prediction error becomes

A

Er|(dri — #7(2))?| = 02+ (B — B(2))¥(B — B(2)). (76)

/

Next, substitute the expression for 3(z): 5(z) = (2l + W)~} (V3 + 5—7_5) We can
express [ as
B =(zl + W)Yzl + V)8 = (2 + ¥)7? (zﬁ + \TJB)

Subtracting 3(z) from j3, we have:
6—B(z) = (zf + ) <z@ + \TJB) — (zd + ) (\Tlﬁ 1 S—Tg)
AL S'e
— (a0 + 1) 1(;@- 7).
- FRandomMarrix They RMT)

(77)



Ridge Estimator Decomposition iv

Plugging (77) into (76) yields
(8- BV - A(@) = (28— ) (el + 0y u(al + 0y (28 - 25). (79)

Opening the brackets, we obtain

(8- BB~ A2) = (28— 22 ) (el + W) w(al + ) (28— 2F)
=223z + V)" W(zl + W) 1B
2z N a (79)
— = 5'(2/ + W) (2 + V) TISe

1 Ay
+5¢ 'S(zl + U)W (zl + W) 71Se.



Ridge Estimator Decomposition v

Thus, the overall out-of-sample prediction error consists of three main terms in addition
to the irreducible error, 0. Each term corresponds to (1) the squared bias, (2) the
cross-term between the signal and the noise, and (3) the variance term due to
overfitting noise.



Proposition[Bias-Variance Tradeoff] We have

(8- B)V(E-5(2) = B(z) - L(2) + V(2) (80)
where ) )
B(z) = 220(zl + W) (2l +W)'5 > 0
V(z) = %5'5(2/+\D)_1\U(zl+ﬁl)_15’5 > 0, (81)
while 5
7(z) = 72 B(zl + ) (2l + W) 1S (82)

(.

Vv
interaction



satisfies
E[Z(z)] < T 4z 7' |1B|* IV

and, hence, is negligible for T — o0, irrespective of z and P.



Proposition shows how ridge regularization leads to the well known bias-variance
tradeoff. However, the nature of this tradeoff changes drastically depending on whether
we are in the classical regime, with P < T, or the modern regime, with P > T. In the
classical regime, W is typically non-degenerate and, hence, the bias term in (80)
vanishes when z — 0 because B(O) is the unbiased OLS estimator. At the same time,
the variance term in (80) tends to be larger for small z. When z — oo, V(z) vanishes,
while the bias 5’(2) converges to 3’V 3. By contrast, in the over-parametrized regime
when P > T, W € RP*P is degenerate (rank(¥) < T) and, hence, the bias does not

vanish even when z — 0.
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4 Proof of Bias-Variance Tradeoff



Interaction is Negligible

E[1(z)] = 4T22 G2E[B' (2 + V)" W(2l + W) 1SS (2l + W) rw(zl + U)Lg
= 4—;25[5'(21 + U)W (2l 4+ U) (2 + U)W (2l + U)Lp

2

4z _ _
< ||5H2—Z Hwlz vz

42_1 yl|2
= M



Proof.
Lemma 11

Suppose that u = (u;)"_, where u; are i.i.d., with E[u;] =0, E[u?] = o2, E[u}] < oo.
Suppose also Ap is a sequence of symmetric random matrices that is /ndependent of u
and is such that E[(P~tr(Ap))?] < K and lim P2E[tr(A%)] = 0. Then,

1
I—Du'Au — P 'o%tr(A) — 0 (85)

in Ly, and, hence, in probability.



Lemma 12
Let z € R be such that the matrices

zly + %5’5 and zl+ + %55’
are invertible. Then, the following identity holds:
1 -1 1 -1
S(z+=25S) = (dr+25) s.
As a consequence, we have

s(z/N n %5'5>_2 _ 5(le + %5’5)_1 (z/N n %5'5)_1

= (2t + %55’)_15(le + %5'5)_1 (86)

1 -2
= ZIT + —55/ 5



Lemma 13

If two symmetric matrices A, B satisfy A < B in the sense of positive definite order
(ie., B—A>0), then
C'AC < (C'BC

for any matrix C. In particular, since A < ||A||l, we have

C'AC < |A| CC.



We can now use these lemmas to prove the following results.

Lemma 14

The matrix
Ar = TSzl + U)W (zl + b)7Ls

is positive definite and uniformly bounded.



[Proof of Lemma 14] We have by Lemma 13 that
0 < Ar < |V TSz + W) Y(zl 4+ V)18 (88)
By (86),
W[ TS (2l + W)zl +0) 1S = |V||(2] +SS'/T)"2SS'/T. (89)
The matrix SS’/ T is symmetric and positive definite. Hence, by the spectral theorem,

(2l +SS'/T)™2SS'/T| < m/\zlx(z+)\)_2)\ < z 1t (90)



Lemma 15

We have

2
%5’5(2/ + U)W (2 + W) 1S — UT tr(WU(zl + ) 2W(zl + ¥)™1) — 0 (91)

in probability, as T — oc.



Proof i

Let
A = TS5z +U)t(zl + U)ts' (92)
By Lemma 14, A is a random, uniformly bounded matrix that is independent of ¢.

Hence, by Lemma 11,

1 . .
= £'S(zl + W) 'W(zl + V) 1S = T 1 Ae (93)

satisfies
T 'Ae — T 'o%tr(A) — 0. (94)



Proof ii

Now, by the commutativity of the trace, tr(CD) = tr(DC) for any matrices C, D and,

hence,
tr(A) = tr(T1S(zl + ¥)W(zl + 1))

= tr(T71S'S(zl + W)t (zl 4 ¥)™) (95)
= tr(U(zl + U) (2l + 0)7Y.



The Characterization of Variance i

Proposition 4

The quantity in Lemma 15 satisfies

7_Ii_r>nooa—7§ tr (\TJ(ZI + ) tw(zl + ITJ)_l> =o? <§(z; c)+z&(z c)),

almost surely, where £(z; ¢) and &'(z; ¢) are defined in Proposition 3.

[Proof] We begin by noting that

Uzl +U) =1 — z(zl +¥) 1.



The Characterization of Variance ii
Multiplying both sides on the right by W(z/ + W)~ gives
U(zl + 0 W(z + 0)™ = W(zl + U) — z(zl + U) 2 W(z + ¥)7L
Taking the trace and dividing by T, we obtain
1 0 -1 -1 1 -1 1 -1 -1
?tr<\ll(zl—|—\li) W(zl+) ) = ?tr<\ll(zl+lll) )—z?tr<(zl+\ll) W(zl+1) )
By Proposition 3 we have that

lim %tr((z/ = \TJ)_l\U> =¢(z;c)

T—oo

and

lim %tr((zl + \TJ)_Z\U> = —¢'(z;¢).

T—oo



The Characterization of Variance iii

Substituting these limits into the previous expression yields

lim %tr(ﬁl(zl )zl + @)—1) — ¢(z;¢) + 2€(z; ¢).

T—oo

Multiplying through by o2 completes the proof.



Convergence of Derivatives

How did we get convergence of derivatives?



What about the Bias?

223 (zl + W) (2l +¥)718 > 0

J/

vV
bias

T2

1 ~ -
= — &S(zl + V) '(zl + V)1 > 0,

J/

TV
variance

(96)



What about the Bias? ii

In general, the expression for B(z) is complex. However, in the case when (3 is itself
random, 3 ~ N(0,03/P), we get

S

B(z) =223 (zl + V)" W(zl + ¥)13
~ o222 P r((zl + U)TW(2l + W) )
= 02 Z2P tr(W(zl +U)7?)

d A
= —o32 (P tr(¥(zl + 1))

= 2 (T r(W(zl + W)Y
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6 Solving The Fixed Point Equation



Solving The Fixed Point Equation i

For P > T, we have ¢ > 1 and

m(z) = P ttr(W—2z)™Y) = —PY(P—T)z™* + stuff from nonzero eigenvalues

= —cY(c—1)z* + stuff from nonzero eigenvalues .
(98)



Solving The Fixed Point Equation ii
Lemma 16 (Get rid of zero eigenvalues)
Let z < 0 and ¢ > 0. Define
m(z;c) = cm(z;c) — (1 — )z ! (99)
Then we have,
m(z;c) >0 (100)
[Proof of Lemma] We have, for z < 0,

m(z;c) = lim cPrir((U -z —(1—¢)z? (101)

P—00, T—00,P/ T—c



Solving The Fixed Point Equation iii

When ¢ < 1, we have —(1 — ¢)z™! > 0 and hence the result immediately follows. When
c > 1, we have

m(z; c) = lim P (W —2z) ) —(1—c)z !

P—00, T—00,P/ T—c

= lim cPlz —(1-c)z?

P—00, T—00,P/T—c

(102)

Now, note that when ¢ > 1, we have P > T; hence, U has P — T zero eigenvalues. Let
us sort the eigenvalues in decreasing order \; > ... > Ap > 0, where eigenvalue from



Solving The Fixed Point Equation

index i =T +1to /= P are zero. So,

1

P
cPt - (1-¢)z!
; )‘i(w) —Z ( )

lim
P—00,T—00,P/T—c

LS| & 1
— dim P et Y
P—00,T—00,P/T—c — (V) -z ] Ai(V) —z
=0
_ = 1 B 1
= lim Py ————— —cPH(P-T)= -
P—00, T—00,P/T—c P )\,.(W) = 2 z

v



Solving The Fixed Point Equation v

1 1 1
= i 4+ (1=c¢)zt
P—><>o,TE>To,P/T—>c A Z ) Cz i z ( C)Z
(104)
1
= l Pt
P—)oo,T—I>ror2>7P/T—>c ¢ Z )
Hence,
m(z;c) >0 (105)
Homework: Let z < 0 and ¢ > 0. Prove that
i (z;¢) = cm'(z;¢c) + (1 — ¢)z 2 (106)



Solving The Fixed Point Equation vi

satisfies
m'(z;¢) >0 (107)



Deriving a Clean Fixed Point Equation i

For z < 0, m(z; c) is the unique positive solution to the nonlinear master equation

1 z
m(zic) = 1 —¢c— czm(z;c) m (1 — ¢ — czm(z; c)) ’ (108)
where
m(z) = / iH_();) . (109)
Substituting
m(z;c) = —(1—c)z ' + cm(z;c) (110)
& zm(z;c) = —(1—c¢)+ czm(z; c)



Deriving a Clean Fixed Point Equation ii

into the Master equation, we get

e~ etz (e ernza)

(111)
2 Uil = — 1 dH(x)
~ zm(z; ) (=1/m(z;c)) m(z; C)/x+1/rﬁ(z; c)’
that is | dH(x)
zm(z;c) = —/m (112)
Rewriting
zm(z;c) = ctzm(z;c) +c 1 - <) (113)



Deriving a Clean Fixed Point Equation iii

and substituting gives

clzm(zie)+cH(l—c) = _/ﬁv(chlz—g);)—i—l’ (114)
which can be rewritten as
c—l—zrﬁ—c/(ld_lf__l—(:;zozo. (115)
We can also rewrite it as an equation for
Z(z;c) = 1/m: (116)



Deriving a Clean Fixed Point Equation iv

0=c—1— zm—c/—(dH(X)

1 + mx)
= 1 - zm+c(1—/L(X~))
(1+ mx) (117)
. N/ xdH(x)
= -1 — zi+cm | ——=
(1+ rx)
— —]_ — Zfﬁ+C/M
Z, +x
That is,
H H
1 = —zr?H—c/Xd IR cz*/Xd ) (118)
Z, + x X+ Z,
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