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What is Random Matrix Theory (RMT)?

▶ Mathematical formalism to study high-dimensional random matrices.

▶ As of today, it is probably the right mathematical language for understanding

Machine Learning.

▶ In high dimensions, stuff tends to “concentrate” and “simplify”
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Concentration Phenomena: The Hidden Order in

High-Dimensional Reality i

Suppose Xt ∈ RP are i.i.d., with i.i.d. coordinates. Then, Xi ,t is wild and i.i.d. But,

P−1∥Xt∥2 = P−1
P∑
i=1

X 2
i ,t ≈ E [X 2

i ,t ] (1)

There are more general concentration inequalities of this sort:

Meta-Theorem For good functions f ,

lim
P→∞

(f (Xt)− E [f (Xt)]) → 0 (2)

in probability. This is a Law of Large Numbers in P (and not in T !)
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Concentration Phenomena: The Hidden Order in

High-Dimensional Reality ii

Click Here if You are Curious: Concentration Inequalities

Where are the traces of concentration in financial data? Where are the i.i.d.,

high-dimensional observations? Where is the hidden order?
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Some Linear Algebra i

▶ A symmetric matrix Ψ ∈ RP×P admits a spectral decomposition

Ψ = UDU ′, D = diag(λi).

▶ Ψ is positive definite if and only if λi > 0.

▶

tr(AB) = tr(BA) (3)

▶

tr(Ak) =
∑
i

λk
i (4)
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Some Linear Algebra ii

▶ Frobenius Norm

∥A∥22 =
∑
i ,j

A2
i ,j = tr(A2) =

∑
i

λ2
i (5)

▶ Trace Norm

∥A∥1 =
∑
i

|λi | (6)

▶ Spectral norm

∥A∥ = max
i

|λi | = max
x

∥Ax∥/∥x∥

▶ Big and Small Matrices: A = I/P : Big or Small?

∥A∥ = 1/P , ∥A∥1 = 1, ∥A∥22 = P−1 . (7)
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Concentration of Quadratic Forms: Heuristic i

Assumption We have St ∈ RP given by St = Ψ
1/2
P Xt , where Xt ∈ RP have i.i.d.

coordinates, Xi ,t , with E [Xi ,t ] = 0,E [X 2
i ,t ] = 1, E [X 4

i ,t ] < ∞.

E.g., St ∼ N(0,ΨP).

Theorem 1 (Pseudo-Theorem)

When P is large,

P−1S ′
tASt ≈ P−1 tr(AΨ)
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Concentration of Quadratic Forms: Heuristic ii

The intuition behind this lemma is particularly clear for the case Ψ = I (i.e., signals Si ,t

are i.i.d. across i). Indeed, when P is large, a “law-of-large-numbers-in-P” implies that

P−1S ′
tASt = P−1

∑
i ,j

Si ,tSj ,tAi ,j

= P−1
P∑
i=1

S2
i ,tAi ,i︸ ︷︷ ︸

≈P−1
∑P

i=1 Ai,i because E [S2
i,t ]=1

+ P−1
∑
i ̸=j

Si ,tSj ,tAi ,j︸ ︷︷ ︸
≈0 because E [Si,tSj,t ]=0

≈ P−1
P∑
i=1

Ai ,i = P−1 tr(A) .

(8)
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Concentration of Quadratic Forms: Rigorous i

Lemma 2 (Concentration of Quadratic Forms)

Let A be a uniformly bounded matrix and let

Yt = S ′
tASt . (9)

Then,

Var[P−1Yt ] ≤ C∥A∥P−1 (10)

for some constant C = C (∥Ψ∥). Hence,

P−1Yt ≈ E [P−1Yt ] = P−1 tr(AΨ) . (11)
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Proof i

For simplicity, we assume Ψ = I so that St = Xt . Then,

Yt =
∑
i ,j

XiXjAi ,j (12)

and therefore

E [Yt ] = E [X ′
tAXt ] = E [

∑
i ,j

XiXjAi ,j ] =
∑
i ,j

E [XiXj ]Ai ,j =
∑
i ,j

δi ,jAi ,j (13)

and

E [Y 2
t ] =

∑
i1,j1,i2,j2

E [Xi1Xj1Ai1,j1Ai2,j2Xi2Xj2] . (14)
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Proof ii

Now, among all fourth-order moments, E [Xi1Xj1Xi2Xj2], the only non-zero moments are

those where either all are identical, i1 = i2 = i3 = i4, or when there are exactly two

identical pairs. The latter can happen in exactly 3 ways. First,

(i1 = i2, j1 = j2), (i1 = j2, j1 = i2) give rise to the terms A2
i1,j1

because, by assumption, A

is symmetric, so that Ai1,j1 = Aj1,i1 . Second, (i1 = j1, i2 = j2) gives rise to Ai ,iAj ,j .
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Thus,
E [Y 2

t ] =
∑

i1,j1,i2,j2

Ai1,j1Ai2,j2E [Xi1Xj1Xi2Xj2]

=
∑
i

A2
i ,iE [X

4
i ] +

∑
i ,j ,i ̸=j

(2A2
i ,j + Ai ,iAj ,j)

=
∑
i

A2
i ,iE [X

4
i ] +

∑
i ,j ,i ̸=j

2A2
i ,j −

∑
i

A2
i ,i + (

∑
i

Ai ,i)
2

=
∑
i

A2
i ,iE [X

4
i ]− 2

∑
i

A2
i ,i +

∑
i ,j

2A2
i ,j −

∑
i

A2
i ,i + (

∑
i

Ai ,i)
2

=
∑
i

A2
i ,i(E [X

4
i ]− 3) + 2∥A∥22 + (tr(A))2

(15)

Thus, since E [Yt ] = tr(A), we have

E [Y 2
t ]− E [Yt ]

2 =
∑
i

A2
i ,i(E [X

4
i ]− 3) + 2∥A∥22 ≤ (E [X 4

i ]− 1)∥A∥22 (16)
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because ∑
i

A2
i ,i ≤

∑
i ,j

A2
i ,j = ∥A∥22 , (17)
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Correlated Case

Homework Use the uncorrelated case Yt = X ′
tAPXt to prove the analogous result for

the correlated case Yt = S ′
tAPSt with St = Ψ1/2Xt .
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So What Can We Learn from One Observation?

We have

P−1S ′
tASt ≈ P−1 tr(ΨA) . (18)

So, measuing it for many A gives us everything we need to know about Ψ?

St has P dimensions, Ψ has P2 dimensions??

Beware of multiple testing!!
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Sample Covariance Matrix i

▶ Empirical covariance

Ψ̂ =
1

T

T∑
t=1

StS
′
t ∈ RP×P (19)

is an unbiased estimator

Howework:

E [Ψ̂] = Ψ . (20)

Howework:

E [Ψ̂2] = Ψ2 + bias (21)
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Sample Covariance Matrix ii

▶ Ridge regression

β̂ = (zI + Ψ̂)−1 1

T

T∑
t=1

Styt (22)

▶ We want to understand Ψ̂

▶ It is a high-dimensional Random Matrix

▶ Is there a hidden structure inside it?

▶ Eigenvalue decomposition

Ψ̂ = ÛD̂Û ′ (23)

▶ Eigenvectors Û are poorly understood

▶ Eigenvalues D̂ are much better understood
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Stieltjes Transform and the Eigenvalue Distribution i

▶ A key object of RMT is the eigenvalue distribution HA(x) of a symmetric matrix

A ∈ RP×P :

HA(x) =
1

P

P∑
i=1

1x<λi (A), (24)

where λi(A) are the eigenvalues of the matrix A.

▶ It is encoded in the Stieltjes Transform

mΨ(−z) = P−1 tr((zI +Ψ)−1) , z > 0 , (25)

because

P−1 tr((zI +Ψ)−1) = P−1
P∑
i=1

((z + λi(Ψ))−1) =

∫
1

z + λ
dHΨ(λ) . (26)
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Stieltjes Transform and the Eigenvalue Distribution ii

▶ Of course, mΨ is not observable! We need to work with its sample counterpart

m̂(−z) = P−1 tr((zI + Ψ̂)−1) , z > 0 (27)

▶ It turns out that the key determinant of its behavior is complexity c = P/T .

▶ When c → 0, we have (see below)

m̂(−z) ≈ mΨ(−z) (28)

▶ When c > 0, this is not the case. A striking discovery of the RMT is that there is a

universal way of linking m̂ to m via a fixed point equation.
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Stieltjes Transform and the Eigenvalue Distribution iii

Theorem 3 (Bai and Zhou (2008))

For each z > 0,

lim
T ,P→∞,P/T→c

m̂(−z) = m(−z ; c) (29)

exists in probability and m(−z ; c) is the unique positive solution to the nonlinear

master equation

m(−z ; c) =
1

1 − c + c z m(−z ; c)
mΨ

(
−z

1 − c + c z m(−z ; c)
,

)
. (30)

Understanding Marcenko-Pastur
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Homework

▶ Howework: Derive m in closed form when Ψ = I (this is the Marcenko-Pastur

Theorem)

▶ Howework: Derive m in closed form when Ψ has just two eigenvalues λ1, λ2. What

else matters in addition to λ1, λ2?

Click the button to reveal hidden content:

Solving The Master Equation
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Implicit Regularization i

Define the implicit shrinkage

Z∗(z ; c) =
z

1 − c + c z m(−z ; c)
(31)
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Implicit Regularization ii

Theorem 4

We have

z m(−z ; c) = Z∗(z ; c)m(−Z∗(z ; c)) (32)

That is, (zI + Ψ̂)−1 behaves as if we are doing (Z∗I +Ψ)−1.

Furthermore,

Z∗ = z + cZ∗

∫
xdH(x)

x + Z∗
(33)

so that

Z∗ ∈ [z , z + c] . (34)
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Implicit Regularization iii

Formally, in finite samples,

Z∗ = z + cZ∗

∫
xdH(x)

x + Z∗

= z + lim cZ∗P
−1
∑
i

λi/(λi + Z∗)

≈ z + Z∗
P

T
P−1 tr(Ψ(Ψ + Z∗)

−1)

= z + Z∗T
−1 tr(Ψ(Ψ + Z∗)

−1)

(35)
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The Master Theorem of RMT

Theorem 5

We have

▶

β′z(zI + Ψ̂)−1β → β′Z∗ (Z∗I +Ψ)−1β (36)

▶

P−1 tr( A︸︷︷︸
P×P

z(zI + Ψ̂)−1) → P−1 tr( A︸︷︷︸
P×P

Z∗ (Z∗I +Ψ)−1) (37)

for any bounded A!!!
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Sherman-Morrison i

Lemma 6 (Sherman-Morrison Formula)

Suppose A ∈ Rn×n is an invertible square matrix and u, v ∈ RP are column vectors.

Then A+ uv ′ is invertible if 1 + v ′A−1u ̸= 0. In this case,

(A+ uv ′)−1 = A−1 − A−1uv ′A−1

1 + v ′A−1u
(38)

and

(A+ uv ′)−1u = A−1u
1

1 + v ′A−1u
(39)

Homework: Prove Sherman-Morrison.
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Concentration of Stieltjes Transform

Lemma 7

We have

P−1 tr(QP(zI + Ψ̂T )
−1) ≈ P−1E [tr(QP(zI + Ψ̂T )

−1)] (40)

almost surely for any sequence of uniformly bounded matrices QP .

What does this mean, and why is this striking?

▶ Ψ̂T is very random

▶ (zI + Ψ̂T )
−1 is very random (but bounded)

Homework: Prove that ∥(zI + Ψ̂T )
−1∥ ≤ z−1 .

▶ But P−1 tr((zI + Ψ̂T )
−1) is not random

▶ P−1 tr(QP(zI + Ψ̂T )
−1) is also not random for any Q
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[Proof of Lemma 7] The proof follows by the same arguments as in Bai and Zhou

(2008). Let ΨT ,t =
1
T

∑
τ ̸=t SτS

′
τ . By the Sherman-Morrison formula

(zI + Ψ̂T )
−1

= (zI + Ψ̂T ,t)
−1 − 1

T
(zI + Ψ̂T ,t)

−1StS
′
t(zI + Ψ̂T ,t)

−1 1

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

.

(41)

Let Et denote the conditional expectation given S1, · · · , St . Let also

qT (z) =
1

P
tr((zI + Ψ̂T )

−1QP) .

With this notation, since Ψ̂T ,t is independent of St , we have

Et [
1

P
tr((zI + Ψ̂T ,t)

−1QP)] = E [
1

P
tr((zI + Ψ̂T ,t)

−1QP)|S1, · · · , St−1, St ]

= E [
1

P
tr((zI + Ψ̂T ,t)

−1QP)|S1, · · · , St−1] = Et−1[
1

P
tr((zI + Ψ̂T ,t)

−1QP)] .
(42)
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Formally, we can rewrite this as

(Et − Et−1)[
1

P
tr((zI + Ψ̂T ,t)

−1QP)] = 0 . (43)
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Therefore,

E [qT (z)]− qT (z) = E0[qT (z)]− ET [qT (z)] =︸︷︷︸
telescope sum

T∑
t=1

(Et−1[qT (z)]− Et [qT (z)])

=
T∑
t=1

(Et−1 − Et)[qT (z)]

=
T∑
t=1

(Et−1 − Et)[qT (z)]− (Et−1 − Et)[
1

P
tr((zI + Ψ̂T ,t)

−1QP)]︸ ︷︷ ︸
=0: we are subtracting zero

=
1

P

T∑
t=1

(Et−1 − Et)[tr((zI + Ψ̂T )
−1QP)︸ ︷︷ ︸

=qT

− tr((zI + Ψ̂T ,t)
−1QP)]

= − 1

P

T∑
t=1

(Et−1 − Et)[γt ] .
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Let

δt = − 1

P
(Et−1 − Et)[γt ] = Et−1[qT (z)]− Et [qT (z)] (45)

be the martingale differences for the martingale Mt = Et [qT (z)], where we have used

(50) and defined

γt = tr

(
1

T
(zI + Ψ̂T ,t)

−1St(1 +
1

T
S ′
t(zI + Ψ̂T ,t)

−1St)
−1S ′

t(zI + Ψ̂T ,t)
−1QP

)

=︸︷︷︸
cyclicality of trace

S ′
t(zI + Ψ̂T ,t)

−1QP
1
T
(zI + Ψ̂T ,t)

−1St

(1 + 1
T
S ′
t(zI + Ψ̂T ,t)−1St

(46)

We will need the following

Homework
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Lemma 8

|x ′ABAx | ≤ ∥A1/2BA1/2∥ x ′Ax (47)

for any positive definite A.

Let

q∗ = sup
P

∥QP∥.

Then,

|γt | =
|S ′

t(zI + Ψ̂T ,t)
−1QP

1
T
(zI + Ψ̂T ,t)

−1St |
(1 + 1

T
S ′
t(zI + Ψ̂T ,t)−1St)

(48)

Using (47) with x = St , A = T−1(zI + Ψ̂T ,t)
−1, B = QP , we get

|γt | =
|x ′ABAx |
1 + x ′Ax

≤ ∥A1/2BA1/2∥ |x ′Ax |
1 + x ′Ax

≤ ∥A1/2BA1/2∥ ≤ ∥A∥ ∥B∥ ≤ z−1q∗.
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Thus, the margingale differences satisfy

|δt | = | 1
P
(Et−1 − Et)[γt ]| ≤ P−1(Et−1[|γt |] + Et [|γt |]) ≤ 2P−1z−1q∗.

We first prove a weaker form of our result.

Proposition 1

E [(E [qT (z)]− qT (z))
2] ≤ P−2T (2z−1q∗)

2 and, hence, E [qT (z)]− qT (z) → 0 in

probability when P−2T → 0.

The claim follows directly from the Ito isometry

E [(qT − E [qT ])
2] = E [

∑
t

δ2t ]

Homework: Prove this.
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It turns out, however, that a more powerful result holds.

Theorem 9 (Burkholder-Davis-Gundy Inequality)

For any q > 2, where exists a Kq > 0 such that

E [(qT − E [qT ])
q] ≤ KqE

(∑
t

δ2t

)q/2
 .

Thus,

E [(qT − E [qT ])
q] ≤ KqP

−qT q/2(2z−1q∗)
q (49)

Almost sure convergence follows with q > 2 from the following lemma.
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Lemma 10

Suppose that

E [|XT |q] ≤ T−α

for some α > 1 and some q > 0. Then, XT → 0 almost surely.

Proof.

It is known that if
∞∑

T=1

Prob(|XT | > ε) < ∞

for any ε > 0, then XT → 0 almost surely. In our case, the Chebyshev inequality

implies that

Prob(|XT | > ε) ≤ ε−qE [|XT |q] ≤ ε−qT−α

and convergence follows because α > 1.
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The proof of the Lemma 7 is complete.
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The ξ function i

▶ 99% of proofs in RMT use Sherman-Morrison:

▶ Let ΨT ,t =
1
T

∑
τ ̸=t SτS

′
τ . By the Sherman-Morrison formula

(zI + Ψ̂T )
−1

= (zI + Ψ̂T ,t)
−1 − 1

T
(zI + Ψ̂T ,t)

−1StS
′
t(zI + Ψ̂T ,t)

−1 1

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

.

(50)

▶ The quantity

(T )−1S ′
t(zI + Ψ̂T ,t)

−1St (51)

appears everywhere.
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The ξ function ii

▶ Concentration of Quadratic Forms implies

T−1 S ′
t(zI + Ψ̂T ,t)

−1St = cP−1 tr(S ′
t(zI + Ψ̂T ,t)

−1St)

= cP−1 tr((zI + Ψ̂T ,t)
−1 StS

′
t︸︷︷︸

LLN

) ≈ cP−1 tr((zI + Ψ̂T ,t)
−1E [StS

′
t ])

= cP−1 tr((zI + Ψ̂T ,t)
−1Ψ)

(52)

▶ Question:

limT−1 tr((zI + Ψ̂T ,t︸︷︷︸
known

)−1 Ψ︸︷︷︸
unknown

) (53)
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The ξ function Characterization i

Proposition 2

We have

lim
T→∞

1

T
tr((zI + Ψ̂)−1Ψ) → ξ(z ; c) (54)

almost surely, where

ξ(z ; c) =
1− zm(−z ; c)

c−1 − 1 + zm(−z ; c)
.

Intuition:

First, for large T ,

limT−1 tr((zI + Ψ̂T ,t)
−1Ψ) = lim cP−1 tr((zI + Ψ̂T )

−1Ψ) (55)
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The ξ function Characterization ii

Second, Ψ ≈ Ψ̂ and hence,

P−1 tr((zI + Ψ̂T )
−1Ψ) ≈ P−1 tr((zI + Ψ̂T )

−1Ψ̂T )

= P−1 tr((zI + Ψ̂T )
−1(−zI + zI + Ψ̂T ))

= P−1 tr((zI + Ψ̂T )
−1(zI + Ψ̂T )) − z P−1 tr((zI + Ψ̂T )

−1)

= 1 − z m̂(−z) → 1 − z m(−z ; c) .

(56)

But this is wrong! The right expression is

1− zm(−z ; c)

c−1 − 1 + zm(−z ; c)
(57)

Proof of Proposition 3 The proof is based on several steps.
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The ξ function Characterization iii

▶ Let

Ψ̂T ,t =
1

T

∑
τ ̸=t

SτS
′
τ . (58)

Then, by the Sherman-Morrison formula (50),

(zI + Ψ̂T )
−1St = (zI + Ψ̂T ,t)

−1St

− 1

T
(zI + Ψ̂T ,t)

−1StS
′
t(zI + Ψ̂T ,t)

−1St
1

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

= (zI + Ψ̂T ,t)
−1St

1

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

.

(59)
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The ξ function Characterization iv

▶ By concentration,

P−1 S ′
t(zI + Ψ̂T ,t)

−1St − P−1 tr(Ψ(zI + Ψ̂T ,t)
−1) → 0 (60)

in probability. At the same time, by Lemma 7,

P−1 tr(Ψ(zI + Ψ̂T ,t)
−1) − E [P−1 tr(Ψ(zI + Ψ̂T ,t)

−1)] → 0

almost surely. Thus,

P−1 S ′
t(zI + Ψ̂T ,t)

−1St − E [P−1 tr(Ψ(zI + Ψ̂T ,t)
−1)] → 0 (61)

is probability and

P−1 tr E [(zI + Ψ̂T )
−1] → m(−z ; c) (62)
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The ξ function Characterization v

▶ Now, we have

1 = P−1 tr E [(zI + Ψ̂T )
−1(zI + Ψ̂T )]

= P−1 tr E [(zI + Ψ̂T )
−1]z + P−1 tr E [(zI + Ψ̂T )

−1Ψ̂T ]

= zm̂(−z) + P−1 tr E [(zI + Ψ̂T )
−1 1

T

∑
t

StS
′
t ]

= {symmetry across t} = zm̂(−z , c) + P−1 tr E [(zI + Ψ̂T )
−1StS

′
t ]

= {using Sherman −Morrison (59)}

= zm̂(−z) + P−1 tr E [(zI + Ψ̂T ,t)
−1St

1

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

S ′
t ]

= zm̂(−z) + E [
P−1S ′

t(zI + Ψ̂T ,t)
−1St

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

].

(63)
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The ξ function Characterization vi

Now, E [T−1 tr(Ψ(zI + Ψ̂T ,t)
−1)] ≤ c∥Ψ∥z−1 and hence is uniformly bounded. Let

us pick a subsequence of T converging to infinity and such that

E [T−1 tr(Ψ(zI + Ψ̂T ,t)
−1)] → q for some q > 0. By (60),

P−1S ′
t(zI + Ψ̂T ,t)

−1St

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

→ c−1q

1 + q

in probability, and this sequence is uniformly bounded. Hence,

E [
P−1S ′

t(zI + Ψ̂T ,t)
−1St

1 + (T )−1S ′
t(zI + Ψ̂T ,t)−1St

] → c−1q

1 + q

and we get

1− zm(−z , c) =
c−1q

1 + q
.
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The ξ function Characterization vii

Thus, the limit of ξ(z ; c) = E [T−1 tr(Ψ(zI + Ψ̂T ,t)
−1)] is independent of the

subsequence of T and satisfies the required equation.

The proof of Proposition 3 is complete.
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Marcenko-Pastur

ξ(z ; c) = limT−1 tr(Ψ(zI + Ψ̂T ,t)
−1) =

1− zm(−z ; c)

c−1 − 1 + zm(−z ; c)
,

m(−z ; c) = limP−1 tr((zI + Ψ̂T ,t)
−1)

(64)

For Ψ = σ2I , we get

ξ(z ; c) = cσ2m(−z ; c) . (65)

This gives a quadratic equation for m:

σ2m(−z ; c) =
1− zm(−z ; c)

c−1 − 1 + zm(−z ; c)
. (66)
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Proposition 3

We have

lim
T→∞

1

T
tr((zI + Ψ̂)−1Ψ) → ξ(z ; c) (67)

almost surely, where

ξ(z ; c) =
1− zm(−z ; c)

c−1 − 1 + zm(−z ; c)
.

Similarly,

lim
T→∞

1

T
tr((zI + Ψ̂)−2Ψ) → −ξ′(z ; c) (68)

almost surely, where

ξ′(z ; c) =
d

dz

(
1− zm(−z ; c)

c−1 − 1 + zm(−z ; c)

)
. (69)
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Data Generating Process i

Assumption 1

There exists a vector β ∈ RP such that

dt+1 = β′St + εt+1 , t = 0, · · · , t + 1 , (70)

where E [εt+1] = 0, E [ε2t+1] = σ2
ε , E [ε4t+1] < ∞ are i.i.d., and St = Ψ1/2Xt , where

Xt = (Xi ,t) where E [Xi ,t ] = 0, E [X 2
i ,t ] = 1, E [X 4

i ,t ] < ∞ are i.i.d., and Ψ = E [StS
′
t ] is

p.s.d. and bounded.

Below, we frequently use the convenient matrix notation d = (dτ )
T
τ=1, and

S = (Sτ )
T−1
τ=0 ∈ RT×P .
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Data Generating Process ii

By (70), the total variance of dT+1 admits the standard decomposition

Var[dT+1] = β′Ψβ︸ ︷︷ ︸
explained variance

+ σ2
ε︸︷︷︸

irreducible noise

. (71)

An econometrician knowing the true β would then achieve the infeasible R2 given by

R2
infeasible = 1 − σ2

ε

β′Ψβ + σ2
ε

. (72)
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Ridge Estimator Decomposition i

β̂(z) = (zI + Ψ̂)−1S
′d

T

= (zI + Ψ̂)−1S
′(Sβ + ε)

T

= (zI + Ψ̂)−1Ψ̂β︸ ︷︷ ︸
information

+ (zI + Ψ̂)−1S
′ε

T︸ ︷︷ ︸
noise

π̂T (z) = β̂T (z)
′ST

(73)

be the ridge estimator.
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Ridge Estimator Decomposition ii

Our goal is to characterize the out-of-sample behavior:

ET

[
(dT+1 − π̂T (z))

2
]
= ET

[
(β′ST + εT+1 − β̂(z)′ST )

2
]

= ET

[
ε2T+1 + (β′ST − β̂(z)′ST )

2
]

= σ2
ε + ET

[
(β′ST − β̂(z)′ST )

2
]
,

(74)

Note that β′ST − β̂(z)′ST = (β − β̂(z))′ST . Taking expectations and using

ET [STS
′
T ] = Ψ, we obtain

ET

[
((β − β̂(z))′ST )

2
]
= (β − β̂(z))′Ψ(β − β̂(z)). (75)
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Ridge Estimator Decomposition iii

Thus, the out-of-sample prediction error becomes

ET

[
(dT+1 − π̂T (z))

2
]
= σ2

ε + (β − β̂(z))′Ψ(β − β̂(z)). (76)

Next, substitute the expression for β̂(z): β̂(z) = (zI + Ψ̂)−1
(
Ψ̂β +

S ′ε

T

)
. We can

express β as

β = (zI + Ψ̂)−1(zI + Ψ̂)β = (zI + Ψ̂)−1
(
zβ + Ψ̂β

)
.

Subtracting β̂(z) from β, we have:

β − β̂(z) = (zI + Ψ̂)−1
(
zβ + Ψ̂β

)
− (zI + Ψ̂)−1

(
Ψ̂β +

S ′ε

T

)
= (zI + Ψ̂)−1

(
zβ − S ′ε

T

)
.

(77)
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Ridge Estimator Decomposition iv

Plugging (77) into (76) yields

(β − β̂(z))′Ψ(β − β̂(z)) =
(
zβ − S ′ε

T

)′
(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1

(
zβ − S ′ε

T

)
. (78)

Opening the brackets, we obtain

(β − β̂(z))′Ψ(β − β̂(z)) =
(
zβ − S ′ε

T

)′
(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1

(
zβ − S ′ε

T

)
= z2 β′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1β

− 2z

T
β′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ε

+
1

T 2
ε′S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ε.

(79)
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Ridge Estimator Decomposition v

Thus, the overall out-of-sample prediction error consists of three main terms in addition

to the irreducible error, σ2
ε . Each term corresponds to (1) the squared bias, (2) the

cross-term between the signal and the noise, and (3) the variance term due to

overfitting noise.
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Proposition[Bias-Variance Tradeoff] We have

(β − β̂(z))′Ψ(β − β̂(z)) = B̂(z) − Î(z) + V̂(z) (80)

where
B̂(z) = z2 β′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1β︸ ︷︷ ︸

bias

≥ 0

V̂(z) =
1

T 2
ε′S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ε︸ ︷︷ ︸

variance

≥ 0,
(81)

while

Î(z) =
2z

T
β′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ε︸ ︷︷ ︸

interaction

(82)
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satisfies

E [Î(z)2] ≤ T−1 4z−1σ2
ε ∥β∥2 ∥Ψ∥2 (83)

and, hence, is negligible for T → ∞, irrespective of z and P .
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Proposition shows how ridge regularization leads to the well known bias-variance

tradeoff. However, the nature of this tradeoff changes drastically depending on whether

we are in the classical regime, with P < T , or the modern regime, with P > T . In the

classical regime, Ψ̂ is typically non-degenerate and, hence, the bias term in (80)

vanishes when z → 0 because β̂(0) is the unbiased OLS estimator. At the same time,

the variance term in (80) tends to be larger for small z . When z → ∞, V̂(z) vanishes,
while the bias B̂(z) converges to β′Ψβ. By contrast, in the over-parametrized regime

when P > T , Ψ̂ ∈ RP×P is degenerate (rank(Ψ̂) ≤ T ) and, hence, the bias does not

vanish even when z → 0.
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Interaction is Negligible

E [Î(z)2] =
4z2

T 2
σ2
εE [β

′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1β]

=
4z2

T
E [β′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1Ψ̂(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1β]

≤ ∥β∥24z
2

T
z−1∥Ψ∥z−1∥Ψ∥z−1

= ∥β∥24z
−1∥Ψ∥2

T

(84)
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Proof.

Lemma 11

Suppose that u = (ui)
P
i=1 where ui are i.i.d., with E [ui ] = 0, E [u2

i ] = σ2, E [u4
i ] < ∞.

Suppose also AP is a sequence of symmetric random matrices that is independent of u

and is such that E [(P−1 tr(AP))
2] < K and limP−2E [tr(A2

P)] = 0. Then,

1

P
u′Au − P−1σ2 tr(A) → 0 (85)

in L2 and, hence, in probability.
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Lemma 12

Let z ∈ R be such that the matrices

zIN +
1

T
S ′S and zIT +

1

T
SS ′

are invertible. Then, the following identity holds:

S
(
zIN +

1

T
S ′S
)−1

=
(
zIT +

1

T
SS ′
)−1

S .

As a consequence, we have

S
(
zIN +

1

T
S ′S
)−2

= S
(
zIN +

1

T
S ′S
)−1(

zIN +
1

T
S ′S
)−1

=
(
zIT +

1

T
SS ′
)−1

S
(
zIN +

1

T
S ′S
)−1

=
(
zIT +

1

T
SS ′
)−2

S .

(86)

Random Matrix Theory (RMT) 64



Lemma 13

If two symmetric matrices A,B satisfy A ≤ B in the sense of positive definite order

(i.e., B − A ≥ 0), then

C ′AC ≤ C ′BC

for any matrix C . In particular, since A ≤ ∥A∥I , we have

C ′AC ≤ ∥A∥C ′C .
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We can now use these lemmas to prove the following results.

Lemma 14

The matrix

AT = T−1S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ (87)

is positive definite and uniformly bounded.
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[Proof of Lemma 14] We have by Lemma 13 that

0 ≤ AT ≤ ∥Ψ∥T−1S(zI + Ψ̂)−1(zI + Ψ̂)−1S ′ (88)

By (86),

∥Ψ∥T−1S(zI + Ψ̂)−1(zI + Ψ̂)−1S ′ = ∥Ψ∥(zI + SS ′/T )−2SS ′/T . (89)

The matrix SS ′/T is symmetric and positive definite. Hence, by the spectral theorem,

∥(zI + SS ′/T )−2SS ′/T∥ ≤ max
λ

(z + λ)−2λ ≤ z−1 . (90)
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Lemma 15

We have

1

T 2
ε′S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ε − σ2

ε

T
tr(Ψ̂(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1) → 0 (91)

in probability, as T → ∞.
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Proof i

Let

A = T−1S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ . (92)

By Lemma 14, A is a random, uniformly bounded matrix that is independent of ε.

Hence, by Lemma 11,

1

T 2
ε′S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ε = T−1ε′Aε (93)

satisfies

T−1ε′Aε − T−1σ2
ε tr(A) → 0 . (94)
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Proof ii

Now, by the commutativity of the trace, tr(CD) = tr(DC ) for any matrices C ,D and,

hence,

tr(A) = tr(T−1S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′)

= tr(T−1S ′S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1)

= tr(Ψ̂(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1) .

(95)
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The Characterization of Variance i

Proposition 4

The quantity in Lemma 15 satisfies

lim
T→∞

σ2
ε

T
tr
(
Ψ̂(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1

)
= σ2

ε

(
ξ(z ; c) + z ξ′(z ; c)

)
,

almost surely, where ξ(z ; c) and ξ′(z ; c) are defined in Proposition 3.

[Proof] We begin by noting that

Ψ̂(zI + Ψ̂)−1 = I − z(zI + Ψ̂)−1.
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The Characterization of Variance ii

Multiplying both sides on the right by Ψ(zI + Ψ̂)−1 gives

Ψ̂(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1 = Ψ(zI + Ψ̂)−1 − z(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1.

Taking the trace and dividing by T , we obtain

1

T
tr
(
Ψ̂(zI+Ψ̂)−1Ψ(zI+Ψ̂)−1

)
=

1

T
tr
(
Ψ(zI+Ψ̂)−1

)
−z

1

T
tr
(
(zI+Ψ̂)−1Ψ(zI+Ψ̂)−1

)
.

By Proposition 3 we have that

lim
T→∞

1

T
tr
(
(zI + Ψ̂)−1Ψ

)
= ξ(z ; c)

and

lim
T→∞

1

T
tr
(
(zI + Ψ̂)−2Ψ

)
= −ξ′(z ; c).
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The Characterization of Variance iii

Substituting these limits into the previous expression yields

lim
T→∞

1

T
tr
(
Ψ̂(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1

)
= ξ(z ; c) + z ξ′(z ; c).

Multiplying through by σ2
ε completes the proof.
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Convergence of Derivatives

How did we get convergence of derivatives?
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What about the Bias? i

B̂(z) = z2 β′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1β︸ ︷︷ ︸
bias

≥ 0

V̂(z) =
1

T 2
ε′S(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1S ′ε︸ ︷︷ ︸

variance

≥ 0,
(96)
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What about the Bias? ii

In general, the expression for B̂(z) is complex. However, in the case when β is itself

random, β ∼ N(0, σ2
β/P), we get

B̂(z) = z2β′(zI + Ψ̂)−1Ψ(zI + Ψ̂)−1β

≈ σ2
βz

2P−1 tr((zI + Ψ̂)−1Ψ(zI + Ψ̂)−1)

= σ2
βz

2P−1 tr(Ψ(zI + Ψ̂)−2)

= −σ2
βz

2 d

dz
(P−1 tr(Ψ(zI + Ψ̂)−1))

= −
σ2
βz

2

c

d

dz
(T−1 tr(Ψ(zI + Ψ̂)−1))

≈ −
σ2
βz

2

c

d

dz
ξ(z ; c) .

(97)

Random Matrix Theory (RMT) 76



Table of Contents

1 The Master Theorem of RMT

2 Proof of the Master Theorem

3 Ridge Regression

4 Proof of Bias-Variance Tradeoff

5 Appendix

6 Solving The Fixed Point Equation

Random Matrix Theory (RMT) 77



Table of Contents

1 The Master Theorem of RMT

2 Proof of the Master Theorem

3 Ridge Regression

4 Proof of Bias-Variance Tradeoff

5 Appendix

6 Solving The Fixed Point Equation

Random Matrix Theory (RMT) 78



Solving The Fixed Point Equation i

For P > T , we have c > 1 and

m̂(z) = P−1 tr((Ψ̂− zI )−1) = −P−1(P − T )z−1 + stuff from nonzero eigenvalues

= −c−1(c − 1)z−1 + stuff from nonzero eigenvalues .
(98)
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Solving The Fixed Point Equation ii

Lemma 16 (Get rid of zero eigenvalues)

Let z < 0 and c > 0. Define

m̃(z ; c) = cm(z ; c)− (1− c)z−1 (99)

Then we have,

m̃(z ; c) > 0 (100)

[Proof of Lemma] We have, for z < 0,

m̃(z ; c) = lim
P→∞,T→∞,P/T→c

cP−1 tr((Ψ̂− zI )−1)− (1− c)z−1
(101)
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Solving The Fixed Point Equation iii

When c < 1, we have −(1− c)z−1 > 0 and hence the result immediately follows. When

c ≥ 1, we have

m̃(z ; c) = lim
P→∞,T→∞,P/T→c

cP−1 tr((Ψ̂− zI )−1)− (1− c)z−1

= lim
P→∞,T→∞,P/T→c

cP−1
P∑
i=1

1

λi(Ψ̂)− z
− (1− c)z−1

(102)

Now, note that when c ≥ 1, we have P > T ; hence, Ψ̂ has P −T zero eigenvalues. Let

us sort the eigenvalues in decreasing order λ1 ≥ ... ≥ λP ≥ 0, where eigenvalue from
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Solving The Fixed Point Equation iv

index i = T + 1 to i = P are zero. So,

lim
P→∞,T→∞,P/T→c

cP−1
P∑
i=1

1

λi(Ψ̂)− z
− (1− c)z−1

= lim
P→∞,T→∞,P/T→c

cP−1
T∑
i=1

1

λi(Ψ̂)− z
+ cP−1

P∑
i=T+1

1

λi(Ψ̂)︸ ︷︷ ︸
=0

−z
− (1− c)z−1

= lim
P→∞,T→∞,P/T→c

cP−1
T∑
i=1

1

λi(Ψ̂)− z
− cP−1(P − T )

1

z
− (1− c)z−1

(103)
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Solving The Fixed Point Equation v

= lim
P→∞,T→∞,P/T→c

cP−1
T∑
i=1

1

λi(Ψ̂)− z
− c

1

z
+

1

z
− (1− c)z−1

= lim
P→∞,T→∞,P/T→c

cP−1
T∑
i=1

1

λi(Ψ̂)− z
> 0 .

(104)

Hence,

m̃(z ; c) > 0 (105)

Homework: Let z < 0 and c > 0. Prove that

m̃′(z ; c) = cm′(z ; c) + (1− c)z−2 (106)
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Solving The Fixed Point Equation vi

satisfies

m̃′(z ; c) > 0 (107)
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Deriving a Clean Fixed Point Equation i

For z < 0, m(z ; c) is the unique positive solution to the nonlinear master equation

m(z ; c) =
1

1 − c − c z m(z ; c)
m

(
z

1 − c − c z m(z ; c)

)
, (108)

where

m(z) =

∫
dH(x)

x − z
. (109)

Substituting

m̃(z ; c) = −(1− c)z−1 + cm(z ; c)

⇔ zm̃(z ; c) = −(1− c) + czm(z ; c)
(110)
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Deriving a Clean Fixed Point Equation ii

into the Master equation, we get

zm(z ; c) =
z

1 − c − c z m(z ; c)
m

(
z

1 − c − c z m(z ; c)

)
= − z

zm̃(z ; c)
m(−1/m̃(z ; c)) = − 1

m̃(z ; c)

∫
dH(x)

x + 1/m̃(z ; c)
,

(111)

that is

zm(z ; c) = −
∫

dH(x)

m̃(z ; c)x + 1
. (112)

Rewriting

zm(z ; c) = c−1zm̃(z ; c) + c−1(1− c) (113)
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Deriving a Clean Fixed Point Equation iii

and substituting gives

c−1zm̃(z ; c) + c−1(1− c) = −
∫

dH(x)

m̃(z ; c)x + 1
, (114)

which can be rewritten as

c − 1 − zm̃ − c

∫
dH(x)

(1 + m̃x)
= 0 . (115)

We can also rewrite it as an equation for

Z∗(z ; c) = 1/m̃ : (116)
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Deriving a Clean Fixed Point Equation iv

0 = c − 1 − zm̃ − c

∫
dH(x)

(1 + m̃x)

= −1 − zm̃ + c(1−
∫

dH(x)

(1 + m̃x)
)

= −1 − zm̃ + cm̃

∫
xdH(x)

(1 + m̃x)

= −1 − zm̃ + c

∫
xdH(x)

Z∗ + x

(117)

That is,

1 = − zm̃ + c

∫
xdH(x)

Z∗ + x
⇔ Z∗ = −z + cZ∗

∫
xdH(x)

x + Z∗
(118)

Go Back
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