Neural Tangent Kernels

Semyon Malamud

EPFL



Table of Contents

1 Neural Nets and Neural Tangent Kernels




What About Neural Networks?

» Neural Networks are Complicated Animals
> Most importantly, they are trained by gradient descent

» Even more importantly, they are trained end-to-end, with forward pass
(=evaluating the NN) and backward pass (=computing the full
gradient using the superposition formula)

» This is incredibly complicated because, contrary to the random

feature model, all NN weights are trained.




The Neural Tangent Kernel i

» Consider a generic NN
f(x;0) (1)
and consider its gradient Vyf(x; ) € R*>P where P is the number
of parameters (weights) of the model.

» What happens when we train it? Consider first the lazy training
regime. Namely, suppose we change the weights a little bit and try to
match the labels y,

f(x;0+A0) = y
& f(x;0) + 20T Vof(x;0) = y (2)
optimal weight change

and hence, to ding the optimal weight change A6, we are running a
regression of y on features S; = Vyf(x;0) € RP



The Neural Tangent Kernel ii

» If w is random, these are random features
» Thus,
NG = (zI +5'S)71S (y — f(x;0)) (3)

B residual

» Equivalently, we can define the Neural Tangent Kernel

K(xi,xj:0) = Vof(xi;0)" Vof(x;;0)

_ 9 . on 9 . (4)
= zk:aekf(x,ﬁ)aekf(xjﬁ)

and we get

~

f(x;0+ A0) =~ f(x;0)
= f(x;0) + K X;:0) (2l + KX, X;0) L (y — F(x;0)) (5)
N———

residual



The Neural Tangent Kernel iii

> That is, a single optimization step = kernel regression with NTK

» What about multi-step optimization?




Table of Contents

2 NTK and Gradient Descent




Suppose we have f(x; #) and we would like to solve

min £(0), £(0) = %Zﬁ(y;,f(x,-;ﬁ)). (6)
i=1

We are going to try solving it by gradient descent (but we actually cannot
because it is NP-hard).

To this end, we pick a learning rate 17 and run
Orr1 = 0 — nVeLl(0:). (7)

This is a dynamical system. It is highly non-linear and complex. Nobody
knows how it behaves in general.

Our first simplification will be to assume 7 is small. This is innocent, right?

No! Catapults in SGD


https://arxiv.org/pdf/2306.04815

When the learning rate 7 is small enough, we get

f(x:0e11) = F(x;0: — nVeL(6t))
G F(x:0:) — nVof(x;0:)Vol(0:). (8)

first order Taylor approximation

Now,

VoL(F) = Vo (n iﬂmﬁ(xﬁ)))
= 13 Vollys F(xi ) (9)
i=1

1 n
= — > i, £(x::9)) Vof (x::0)
i=1



Substituting, we obtain gradient descent in the prediction space:

Vof(x;0:)'VoL(6:)
= Vpf(x;0:) (ZE yi, f(x;; 6 V@f(X,,H)) (10)

= Zey(y,, xi; 0:)) Vof (x;0) Vof (xi; 0) .

Let us introduce the Tangent Kernel
K(x,%;0:) = Vaf(x;0:)Vof(%;0:). (11)

Clearly, this is a positive-definite kernel. This kernel is random because it
depends on @ in subtle ways, and evolves through training. When the
parametric family f(x; 6) is a Neural Network, it is called a Neural



Tangent Kernel (NTK). Using this kernel, replacing n with ndt, and taking

the limit as dt — 0, we can rewrite

f(X; 6t+1) = f(X, 91‘) — ndthf(X,Qt)/V9£(9t)

f(x;0e41) — f(x;0¢)

dt = — 77V9f(x, Ht)/VQE(Gt)

Theorem (Predictions Dynamics for Gradient Flow)

%f(x; 0:) = —nK(x, X; 91‘) Ly (y; F(X:0r)),

where X = (x;)?_; and
K(x, X: 80) € RYM, 65(y: £(X: 00)) = (0ol Fxis 0)g € RP,

(12)

(13)




MSE Dynamics i

» When /(y,y) = 0.5(y — )2, we get

%f(x;&t) _ —nK(X,X;@t)%(f(X;Gt)—y). (14)

» Thus, for x = X, we get

d 1
Ef(X;Qt) = —nK(X, X;0:) ;(f(X;@t)—y). (15)
> Let
Ke = n'K(X,X:0:), ur = (F(X;0:)—y).
Then,

u/t = —nAtu. (16)

Since A; is moving, there is no closed form solution.



MSE Dynamics ii

» The remarkable discovery of Neural Tangent Kernel implies that
K(xi, xj; ) is independent of @ for very (infinitely!) wide NNs. See
also Conditions for constant NTK

> if Ay = A, we get

uh = —nAu; & u = e "y (17)

that is the in-sample predictions are

F(X:0:) — y = e ™ (F(X;6) —y) (18)
——
initial seed

» convergence to interpolation when A is positive definite.


https://arxiv.org/abs/1806.07572
https://arxiv.org/pdf/2010.01092.pdf

MSE Dynamics iii
» The OOS predictions are then
d

Ef(x;et) = —nK(x, X)n"H(f(X;0:) — )
d (19)
af(x;et) = —nK(x,X)n"te MA(f(X;6p) — y)

and the solution is

f(x;0:) = f(x; 6o)
initial random seed (20)

+ K(x X) K(X; X) 71— e KXX0)(y — £(X; 6p))
» In the infinite epoch limit, we get Kernel Regression:

f(x;0:) = f(x;00) 4+ K(x; X)K(X; X)Ly — £(X;60))
initial random seed

(21)



MSE Dynamics iv

» This is a family of interpolators indexed by the random seed 6y; the
final output always depends on . Thus, contrary to the linear
regression, we do not converge to the unique minimal norm
interpolator!

» For finite t, this is spectral shrinkage:

A = K(X;X) = UDU

(2l + A = ATLAGE +A™YH < 27
I (22)

AL(1—e A < ptnl

<1



Table of Contents

3 Dynamic NTK, The After-Kernel, and Boosting




Proposition

Suppose that f is differentiable, £y is continuous, and that / is such that,
for any R > 0, the set {v € R: {(y,v) < R} is bounded and ¢ > —A for
some A > 0. Suppose also that NTK stabilizes after T epochs:

|K(x; X;0:) — K(x; X;01)|| <eforall t > T. Then,

f(x;0:) = f(x;0r) + K(x, X;0r)U: + O(e) (23)
—— —_—
trained DNN trained kernel machine

for some vector U; that depends on the training data.




» The link between NTK and DNN is particularly clear for the MSE loss
U(y,9) = (y — 9)% In this case (23) takes the form

f(x;0:) ~ f(x;07) + K(x, X;07)(zl +K(X, X;07)) " Hy—Ff(X;07))
(24)
for some ridge parameter z.

» In other words, residual DNN training (for t > T) experiences a form
of “gradient boosting” in which DNN residuals y — f(X;071) are fit
via kernel ridge regression (the kernel ridge predictor uses
U(z) = (71K (X, X;07) + zI)~Ly rather than the implicit U; of
(23)). Note that the after-training NTK in (23) is not directly
optimized, it is just evaluated at the trained DNN parameters.




» A striking discovery is that replacing f(x;67) with 0 and changing z
with a judiciously chosen Z gives approximately the same result,

F(x;07) + K(x, X;07)(zl + K(X, X;07)) Yy — f(X;07))

(25)
~ K(x,X;07)(Z + K(X, X;07)) " ly.

» Prediction performance of the after-training NTK K(-,-; 67) often
matches or surpasses the DNN predictor f(x;071).

» Evidently, the kernel component is not just a booster, it is the main

event.




[Proof]We have

%f(x; 0:) = —nK(x,X; ;) %ﬁy(y; f(X;6:)), (26)

Our first observation is that

> U PO 00)) = Ll FX: )0, X3 00) (s (X3 00) < O
i=1
(27)

because K is positive semi-definite. From the assumptions made about /,
we immediately get that £(X;6;) stays uniformly bounded. Let f satisfy
dy 1 .
af(x;ﬁt) = —nK(x,X;07) Eﬁy(y; f(X;0:), f(x;07)=Ff(x;071).
(28)



Then,
1£(x; 0c) — £(x; 6) |

H/ K(x, X:7) = K, X3 07)) 5y (X 6,))ar |
(29)

IN

[0 x:00) = K X:07) 2t O 0

t

< ent—T) sup |~ y, y (i F(X50-))
TE[T,t]

where the latter supremum is finite because ¢ is continuous and f(X; ;)
stays uniformly bounded. The claim now follows because

F(x:0,) — f(x;HT)—K(x,X;GT)n/tTiﬁy(y; F(X:0.))dr  (30)



	Neural Nets and Neural Tangent Kernels
	NTK and Gradient Descent
	Dynamic NTK, The After-Kernel, and Boosting

