
Neural Tangent Kernels

Semyon Malamud

EPFL

Table of Contents

1 Neural Nets and Neural Tangent Kernels

2 NTK and Gradient Descent

3 Dynamic NTK, The After-Kernel, and Boosting

Neural Tangent Kernels 1

What About Neural Networks?

▶ Neural Networks are Complicated Animals

▶ Most importantly, they are trained by gradient descent

▶ Even more importantly, they are trained end-to-end, with forward pass

(=evaluating the NN) and backward pass (=computing the full

gradient using the superposition formula)

▶ This is incredibly complicated because, contrary to the random

feature model, all NN weights are trained.

Neural Tangent Kernels 2

The Neural Tangent Kernel i

▶ Consider a generic NN

f (x ; θ) (1)

and consider its gradient ∇θf (x ; θ) ∈ R1×P , where P is the number

of parameters (weights) of the model.

▶ What happens when we train it? Consider first the lazy training

regime. Namely, suppose we change the weights a little bit and try to

match the labels y ,

f (x ; θ +∆θ) ≈ y

⇔ f (x ; θ) + ∆θ⊤︸︷︷︸
optimal weight change

∇θf (x ; θ) = y (2)

and hence, to ding the optimal weight change ∆θ, we are running a

regression of y on features Si = ∇θf (xi ; θ) ∈ RP

Neural Tangent Kernels 3

The Neural Tangent Kernel ii

▶ If w is random, these are random features

▶ Thus,

∆θ = (zI + S ′S)−1S ′︸ ︷︷ ︸
β

(y − f (x ; θ))︸ ︷︷ ︸
residual

(3)

▶ Equivalently, we can define the Neural Tangent Kernel

K (xi , xj ; θ) = ∇θf (xi ; θ)
⊤∇θf (xj ; θ)

=
∑
k

∂

∂θk
f (xi ; θ)

∂

∂θk
f (xj ; θ)

(4)

and we get

f (x ; θ +∆θ) ≈ f̂ (x ; θ)

= f (x ; θ) + K (x ;X ; θ)⊤(zI + K (X ,X ; θ))−1 (y − f (x ; θ))︸ ︷︷ ︸
residual

(5)

Neural Tangent Kernels 4

The Neural Tangent Kernel iii

▶ That is, a single optimization step = kernel regression with NTK

▶ What about multi-step optimization?

Neural Tangent Kernels 5

Table of Contents

1 Neural Nets and Neural Tangent Kernels

2 NTK and Gradient Descent

3 Dynamic NTK, The After-Kernel, and Boosting

Neural Tangent Kernels 6

Suppose we have f (x ; θ) and we would like to solve

min
θ

L(θ), L(θ) =
1

n

n∑
i=1

ℓ(yi , f (xi ; θ)) . (6)

We are going to try solving it by gradient descent (but we actually cannot

because it is NP-hard).

To this end, we pick a learning rate η and run

θt+1 = θt − η∇θL(θt) . (7)

This is a dynamical system. It is highly non-linear and complex. Nobody

knows how it behaves in general.

Our first simplification will be to assume η is small. This is innocent, right?

No! Catapults in SGD

Neural Tangent Kernels 7

https://arxiv.org/pdf/2306.04815

When the learning rate η is small enough, we get

f (x ; θt+1) = f (x ; θt − η∇θL(θt))
≈︸︷︷︸

first order Taylor approximation

f (x ; θt) − η∇θf (x ; θt)
′∇θL(θt) . (8)

Now,

∇θL(θ) = ∇θ

(
1

n

n∑
i=1

ℓ(yi , f (xi ; θ))

)

=
1

n

n∑
i=1

∇θℓ(yi , f (xi ; θ))

=
1

n

n∑
i=1

ℓŷ (yi , f (xi ; θ))∇θf (xi ; θ)

(9)

Neural Tangent Kernels 8

Substituting, we obtain gradient descent in the prediction space:

∇θf (x ; θt)
′∇θL(θt)

= ∇θf (x ; θt)
′

(
n∑

i=1

ℓŷ (yi , f (xi ; θt))∇θf (xi ; θt)

)

=
n∑

i=1

ℓŷ (yi , f (xi ; θt))∇θf (x ; θt)
′∇θf (xi ; θt) .

(10)

Let us introduce the Tangent Kernel

K (x , x̃ ; θt) = ∇θf (x ; θt)
′∇θf (x̃ ; θt) . (11)

Clearly, this is a positive-definite kernel. This kernel is random because it

depends on θ in subtle ways, and evolves through training. When the

parametric family f (x ; θ) is a Neural Network, it is called a Neural

Neural Tangent Kernels 9

Tangent Kernel (NTK). Using this kernel, replacing η with ηdt, and taking

the limit as dt → 0, we can rewrite

f (x ; θt+1) = f (x ; θt) − ηdt∇θf (x ; θt)
′∇θL(θt)

f (x ; θt+1) − f (x ; θt)

dt
= − η∇θf (x ; θt)

′∇θL(θt)
(12)

Theorem (Predictions Dynamics for Gradient Flow)

d

dt
f (x ; θt) = −ηK (x ,X ; θt)

1

n
ℓŷ (y ; f (X ; θt)) , (13)

where X = (xi)
n
i=1 and

K (x ,X ; θt) ∈ R1×n, ℓŷ (y ; f (X ; θt)) = (ℓŷ (yi , f (xi ; θt)))
n
i=1 ∈ Rn×1.

Neural Tangent Kernels 10

MSE Dynamics i

▶ When ℓ(y , ŷ) = 0.5(y − ŷ)2, we get

d

dt
f (x ; θt) = −ηK (x ,X ; θt)

1

n
(f (X ; θt)− y) . (14)

▶ Thus, for x = X , we get

d

dt
f (X ; θt) = −ηK (X ,X ; θt)

1

n
(f (X ; θt)− y) . (15)

▶ Let

K̂t = n−1K (X ,X ; θt), ut = (f (X ; θt)− y) .

Then,

u′t = −ηAt ut . (16)

Since At is moving, there is no closed form solution.

Neural Tangent Kernels 11

MSE Dynamics ii

▶ The remarkable discovery of Neural Tangent Kernel implies that

K (xi , xj ; θ) is independent of θ for very (infinitely!) wide NNs. See

also Conditions for constant NTK

▶ if At = A, we get

u′t = −ηAut ⇔ ut = e−ηtAu0 (17)

that is the in-sample predictions are

f (X ; θt) − y = e−ηtA(f (X ; θ0)︸ ︷︷ ︸
initial seed

− y) (18)

▶ convergence to interpolation when A is positive definite.

Neural Tangent Kernels 12

https://arxiv.org/abs/1806.07572
https://arxiv.org/pdf/2010.01092.pdf

MSE Dynamics iii

▶ The OOS predictions are then

d

dt
f (x ; θt) = −ηK (x ,X)n−1(f (X ; θt) − y)

d

dt
f (x ; θt) = −ηK (x ,X)n−1e−ηtA(f (X ; θ0) − y)

(19)

and the solution is

f (x ; θt) = f (x ; θ0)︸ ︷︷ ︸
initial random seed

+ K (x ;X)K (X ;X)−1(I − e−ηtn−1K(X ;X))(y − f (X ; θ0))

(20)

▶ In the infinite epoch limit, we get Kernel Regression:

f (x ; θt) = f (x ; θ0)︸ ︷︷ ︸
initial random seed

+ K (x ;X)K (X ;X)−1(y − f (X ; θ0))

(21)

Neural Tangent Kernels 13

MSE Dynamics iv

▶ This is a family of interpolators indexed by the random seed θ0; the

final output always depends on θ0. Thus, contrary to the linear

regression, we do not converge to the unique minimal norm

interpolator!

▶ For finite t, this is spectral shrinkage:

A = K (X ;X) = UDU ′

(zI + A)−1 = A−1 (A(zI + A)−1)︸ ︷︷ ︸
≤1

≤ z−1I

A−1 (I − e−ηtn−1A)︸ ︷︷ ︸
≤1

≤ ηtn−1I

(22)

Neural Tangent Kernels 14

Table of Contents

1 Neural Nets and Neural Tangent Kernels

2 NTK and Gradient Descent

3 Dynamic NTK, The After-Kernel, and Boosting

Neural Tangent Kernels 15

Proposition

Suppose that f is differentiable, ℓŷ is continuous, and that ℓ is such that,

for any R > 0, the set {v ∈ R : ℓ(y , v) < R} is bounded and ℓ ≥ −A for

some A > 0. Suppose also that NTK stabilizes after T epochs:

∥K (x ;X ; θt)− K (x ;X ; θT)∥ ≤ ε for all t ≥ T . Then,

f (x ; θt) = f (x ; θT)︸ ︷︷ ︸
trained DNN

+ K (x ,X ; θT)Ut︸ ︷︷ ︸
trained kernel machine

+ O(ε) (23)

for some vector Ut that depends on the training data.

Neural Tangent Kernels 16

▶ The link between NTK and DNN is particularly clear for the MSE loss

ℓ(y , ŷ) = (y − ŷ)2. In this case (23) takes the form

f (x ; θt) ≈ f (x ; θT) + K (x ,X ; θT)(zI+K (X ,X ; θT))
−1(y−f (X ; θT))

(24)

for some ridge parameter z .

▶ In other words, residual DNN training (for t > T) experiences a form

of “gradient boosting” in which DNN residuals y − f (X ; θT) are fit

via kernel ridge regression (the kernel ridge predictor uses

U(z) = (n−1K (X ,X ; θT) + zI)−1y rather than the implicit Ut of

(23)). Note that the after-training NTK in (23) is not directly

optimized, it is just evaluated at the trained DNN parameters.

Neural Tangent Kernels 17

▶ A striking discovery is that replacing f (x ; θT) with 0 and changing z

with a judiciously chosen z̃ gives approximately the same result,

f (x ; θT) + K (x ,X ; θT)(zI + K (X ,X ; θT))
−1(y − f (X ; θT))

≈ K (x ,X ; θT)(z̃ I + K (X ,X ; θT))
−1y .

(25)

▶ Prediction performance of the after-training NTK K (·, ·; θT) often
matches or surpasses the DNN predictor f (x ; θT).

▶ Evidently, the kernel component is not just a booster, it is the main

event.

Neural Tangent Kernels 18

[Proof]We have

d

dt
f (x ; θt) = −ηK (x ,X ; θt)

1

n
ℓŷ (y ; f (X ; θt)) , (26)

Our first observation is that

d

dt

n∑
i=1

ℓ(yi , f (Xi ; θt)) = −ℓŷ (y ; f (X ; θt))
⊤ηK (x ,X ; θt) ℓŷ (y ; f (X ; θt)) ≤ 0

(27)

because K is positive semi-definite. From the assumptions made about ℓ,

we immediately get that f (X ; θt) stays uniformly bounded. Let f̌ satisfy

d

dt
f̌ (x ; θt) = −ηK (x ,X ; θT)

1

n
ℓŷ (y ; f (X ; θt)) , f̌ (x ; θT) = f (x ; θT) .

(28)

Neural Tangent Kernels 19

Then,

∥f̌ (x ; θt)− f (x ; θt)∥

= ∥
∫ T

t
η(K (x ,X ; θτ)− K (x ,X ; θT))

1

n
ℓŷ (y ; f (X ; θτ))dτ∥

≤
∫ T

t
η∥(K (x ,X ; θτ)− K (x ,X ; θT))

1

n
ℓŷ (y ; f (X ; θτ))∥dτ

≤ ε η(t − T) sup
τ∈[T ,t]

∥1
n
ℓŷ (y ; f (X ; θτ))∥,

(29)

where the latter supremum is finite because ℓŷ is continuous and f (X ; θt)

stays uniformly bounded . The claim now follows because

f̌ (x ; θt) = f (x ; θT)− K (x ,X ; θT)η

∫ T

t

1

n
ℓŷ (y ; f (X ; θτ))dτ (30)

Neural Tangent Kernels 20

	Neural Nets and Neural Tangent Kernels
	NTK and Gradient Descent
	Dynamic NTK, The After-Kernel, and Boosting

