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Mean-Variance Optimization: Unconditional i

▶ assets i = 1, · · · ,N have prices Pi ,t and excess returns

Ri ,t+1 =
Pi ,t+1 + Di ,t+1

Pi ,t
− Rf ,t︸︷︷︸

risk free rate

(1)

▶ if you invest fraction πi ,t of your wealth Wt into security i , the rest

stays on your bank account and grows at the rate Rf ,t :

Wt =
∑
i

πi ,tWt︸ ︷︷ ︸
investment in stock i

+ (Wt −
∑
i

πi ,tWt)︸ ︷︷ ︸
bank account

(2)
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Mean-Variance Optimization: Unconditional ii

and then you sell your investments at time t and collect dividends so

that

Wt+1 =
∑
i

Wtπi ,t
Pi ,t+1 + Dt+1

Pi ,t
+ (Wt −

∑
i

πi ,tWt)Rf ,t

= WtRf ,t + Wt

∑
i

πi ,tRi ,t+1

(3)

▶ Thus, the excess return on your wealth is

Wt+1

Wt
− Rf ,t =

∑
i

πi ,tRi ,t+1 = π′
tRt+1 (4)

▶ Thus, we want πt that gives good returns. But what is the criterion?
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Mean-Variance Optimization: Unconditional iii

▶ Intuitively, we like high return and low variance, hence, we might

try to find a static portfolio that maximizes

π = argmax
π

(
E [π′Rt+1] − 0.5 γ︸︷︷︸

risk aversion

Var[π′Rt+1]
)

(5)

▶ The solution is Markowitz

π = γ−1Var[R]−1 E [R] . (6)

▶ Alternatively, one could optimize

π = argmax
π

(
E [π′Rt+1] − 0.5 γ︸︷︷︸

risk aversion

E [(π′Rt+1)
2]
)

(7)
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Mean-Variance Optimization: Unconditional iv

and the solution is

π̃ = γ−1(E [Rt+1R
′
t+1])

−1 E [Rt+1]

= const · π, const =
1

1 + E [Rt+1]′Var[Rt+1]−1E [Rt+1]

(8)

where

E [Rt+1R
′
t+1] = Var[Rt+1] + E [Rt+1]E [Rt+1]

′ = (E [Ri ,t+1Rj ,t+1])
N
i ,j=1

(9)
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Why Are the Two Markowitz Portfolios Proportional? The

Sherman-Morrison formula i

The magic behind is the

Lemma (Sherman-Morrison formula)

(A+ xx ′)−1 = A−1 − A−1xx ′A−1

1 + x ′A−1x
(10)

and

(A+ xx ′)−1x =
A−1x

1 + x ′A−1x
(11)

Proof[Proof of the Sherman-Morrison formula] Recall that

xx ′ = (xixj)
N
i ,j=1
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Why Are the Two Markowitz Portfolios Proportional? The

Sherman-Morrison formula ii

is a symmetric, positive, semi-definite, rank − 1 matrix (all columns are

proportional to x). Then,

(A+ xx ′)(A−1 − A−1xx ′A−1

1 + x ′A−1x
)

= I − xx ′A−1

1 + x ′A−1x
+ xx ′A−1 − xx ′

A−1xx ′A−1

1 + x ′A−1x

= I − xx ′A−1

1 + x ′A−1x
+ xx ′A−1 − xx ′A−1 x ′A−1x

1 + x ′A−1x
= I

(12)

and

(A+ xx ′)−1x = (A−1 − A−1xx ′A−1

1 + x ′A−1x
)x =

A−1x

1 + x ′A−1x
(13)

Asset Pricing and ML 7



(Very Big) Issues with Markowiz

▶ Markowitz assumes that we know the truth! The true

E [R] = (E [Ri ,t+1])
Nt
i=1, Var[R] = (Cov(Ri ,t+1,Rj ,t+1))

Nt
i ,j=1 (14)

where Nt is the number of assets (stocks?) available at time t.

▶ The problem is that:

• expected stock returns move a lot over time: Hence, using static

portfolio is a very bad idea
• we just do not have enough data to estimate E [R] and Var[R]. We

can use naive

Ē [R] =
1

T

T∑
t=1

Rt , Var[R] =
1

T

T∑
t=1

(Rt − Ē [R])︸ ︷︷ ︸
N×1

(Rt − Ē [R])′︸ ︷︷ ︸
1×N︸ ︷︷ ︸

N×N
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Incorporating Conditional Information: The conditional

Markowitz i

We would like to incorporate conditional information.

▶ mean-variance optimization:

πt = argmax
πt

(
Et [π

′
tRt+1] − 0.5 γ︸︷︷︸

risk aversion

Vart [π
′
tRt+1]

)
(15)

and hence the Mean-Variance Efficient (MVE) portfolio is

πt︸︷︷︸
conditional tangency portfolio

= γ−1 (Vart [Rt+1])
−1︸ ︷︷ ︸

N×N covariance matrix

Et [Rt+1]︸ ︷︷ ︸
N×1 expected returns

(16)
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Incorporating Conditional Information: The conditional

Markowitz ii

▶ Similarly,

π̃t = argmax
π

(
Et [π

′Rt+1] − 0.5 γ︸︷︷︸
risk aversion

Et [(π
′Rt+1)

2]
)

(17)

is given by

π̃t = γ−1(Et [Rt+1R
′
t+1])

−1 Et [Rt+1]

=
1

1 + Et [Rt+1]′Vart [Rt+1]−1Et [Rt+1]
πt

(18)

where

Et [Rt+1R
′
t+1] = Vart [Rt+1] + Et [Rt+1]Et [Rt+1]

′ (19)
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Incorporating Conditional Information: The conditional

expectation i

▶ We would need

Et [Rt+1] = arg min
F :RP→RN

E [∥Rt+1 − F (St)∥2]

Et [Rt+1R
′
t+1] = arg min

G :RP→RN×N
E [∥Rt+1R

′
t+1 − G (St)∥2]

(20)

▶ The reality is that we still cannot compute E [·] because we do not

have enough data. So, we will still be doing

Et [Xt+1] = argmin
F

1

T

∑
t

|Xt+1 − F (St)|2 (21)
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Intoduction to Asset Pricing i

▶ I promised Asset Pricing, but we did Markowitz instead. Why?

▶ Intuitively, we expect that

Pi ,t = (Rf ,t)
−1 Et [Pi ,t+1 + Di ,t+1]︸ ︷︷ ︸

Definitely wrong in the data

(22)

because the discount factor (Rf ,t)
−1 is too naive

▶ We need a smart discount factor (SDF):

Pi ,t = Et [ Mt,t+1︸ ︷︷ ︸
stochastic discount factor

(Pi ,t+1 + Di ,t+1)] (23)

Asset Pricing and ML 13



Intoduction to Asset Pricing ii

▶ with a bit of algebra, this is equivalent to

Et [Ri ,t+1Mt,t+1] = 0 (24)

and

Et [Mt,t+1]︸ ︷︷ ︸
scale of the SDF

= R−1
f ,t

▶ By direct calculation,

Mt+1 = 1 − π̃′
tRt+1 (25)

does the job:

Et [Rt+1Mt,t+1] = Et [Rt+1 (1 − R ′
t+1π̃t)]

= Et [Rt+1] − Et [Rt+1R
′
t+1] π̃t = 0

(26)
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Intoduction to Asset Pricing iii

implies

π̃t = Et [Rt+1R
′
t+1]

−1 Et [Rt+1] (27)

We now state

Theorem

Nothing Has Alpha Against π̃′
tRt+1
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Implications for Testing “If we have found a new, useful

strategy”

▶ If we have found the true, ultimate π̃t , nothing has alpha against it:

If you have some other portfolio ξt and run the regression

ξ′tRt+1 = α + βπ̃′
tRt+1 + εt+1 .

▶ If α is not significant, reject the strategy ξt , move somewhere else.

▶ if α is significant, the π̃t is not efficient and you should try combining

it with π̃t
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Testing Conditional Efficiency

▶ We cannnot compute Et [·]
▶ Instead, we can build instruments Zt and test that

Et [Mt+1Rt+1] = 0 ⇔ E [Zt Mt+1Rt+1] = 0

for all instruments!

▶ Thus, we need to build infinitely many Zt thought machine learning

and then test
1

T

∑
t

Zt Mt+1Rt+1 ≈ 0

Complexity is always there!
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From Non-Tradable to Tradable SDFs i

▶ What about asset pricing theory?

▶ the SDF

M̃t+1 =
e−ρU ′(Ct+1)

U ′(Ct)︸ ︷︷ ︸
=IMRS

comes from the Euler equation (things get more complex with

Epstein-Zin preferences, expectations, sentiments, etc)

Et [
e−ρU ′(Ct+1)

U ′(Ct)︸ ︷︷ ︸
=IMRS

(Rt+1 + Rf ,t)] = 1 ⇔ Et [M̃t+1Rt+1] = 0 (28)

because

Rf ,t = Et [M̃t+1]
−1 . (29)
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From Non-Tradable to Tradable SDFs ii

▶ When markets are complete,

Mt+1 proportional to M̃t+1

and the proportionality constant can be pinned down by

M̃t+1 =
Mt+1

Rf ,tEt [Mt+1]
(30)

▶ The normalization ensures that

Et [M̃t+1] = R−1
f ,t (31)
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From Non-Tradable to Tradable SDFs iii

▶ In general, we need to project

Mt+1

Rf ,tEt [Mt+1]︸ ︷︷ ︸
unique tradable

= Projt(M̃t+1) = argmin
a,π

Et [(M̃t+1−a(1−π′Rt+1))
2]

(32)

▶ solution is

π = π̃t , a =
1

Rf ,tEt [Mt+1]
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Panel Datasets: Leveraging the Power of Big Data i

▶ Now comes the big question: How do we measure the conditional

expectations, Et [Rt+1] and Et [Rt+1R
′
t+1]?

▶ Running prediction models per stock is infeasible due to insufficient

data:

Et [Ri ,t+1] =︸︷︷︸
bad idea

gi (Xi ,t)

▶ use panel data

Et [Ri ,t+1] =︸︷︷︸
good idea

g(Xi ,t)

▶ panel means same function g for all stocks.

▶ non-linear g means machine learning

▶ What about the covariance matrix? How do we model a

time-varying covariance structure?
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Panel Datasets: Leveraging the Power of Big Data ii

▶ Typically, we assume a factor structure:

Rt+1 = S︸︷︷︸
factor exposures

Ft+1︸︷︷︸
factors

+ εt+1

▶ In reality, factor exposures are time-varying:

Rt+1 = St Ft+1 + εt+1

▶ If Covt [Ft+1] = ΣF and

Covt [εt+1] = diag(σ2
i ,t), σi ,t = idiosyncratic volatility

so that the Conditional covariance matrix is given by

Et [Rt+1R
′
t+1] = S ′

tΣFSt + diag(σ2
i ,t)
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Panel Datasets: Leveraging the Power of Big Data iii

▶ Equivalently:

Et [Ri ,t+1Rj ,t+1] = S ′
i ,t ΣF Sj ,t︸ ︷︷ ︸

systematic covariance

+ δi ,jσ
2
i ,t︸ ︷︷ ︸

idiosyncratic variance

where ΣF and σi ,t are to be estimated.

▶ Can we avoid computing the conditional covariance matrix?
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Managed Portfolios and Rich Conditional Factor Structures i

▶ Suppose

Ri ,t+1 = S ′
i ,t︸︷︷︸

conditional betas

· F̃t+1︸︷︷︸
latent factors

+ εi ,t+1

▶

Et [F̃t+1] = λF︸︷︷︸
latent factor risk premia

, Et [F̃t+1F̃
′
t+1] = ΣF︸︷︷︸

latent factor cov

▶ Thus,

Et [Rt+1] = StλF

and

Et [Rt+1R
′
t+1] = StΣFS

′
t +Σε
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Managed Portfolios and Rich Conditional Factor Structures ii

▶

Mt+1 = 1− π̃′
tRt+1 = 1 − W (St)

′Rt+1 , (33)

where π̃t = Et [Rt+1R
′
t+1]

−1Et [Rt+1] and, hence,

W (St) = (StΣF ,tS
′
t +Σε)

−1︸ ︷︷ ︸
conditional covariance

StλF︸ ︷︷ ︸
conditional expectation

(34)

▶ Define managed portfolios

Ft+1 = S ′
tRt+1. (35)

and the unconditionally efficient portfolio

λ = E [Ft+1F
′
t+1]

−1E [Ft+1] (36)
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Managed Portfolios and Rich Conditional Factor Structures iii

▶ By construction,

MF
t+1 = 1− λ′Ft+1 (37)

prices factors unconditionally:

E [MF
t+1Ft+1] = 0 (38)

▶ However,

Et [M
F
t+1Rt+1] ̸= 0

because

λ′S ′
tRt+1 ̸= λF

′ S ′
t Σ

−1
t Rt+1,

with

Σt = (StΣF ,tS
′
t +Σε)
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Click on this link to know more:

APT or “AIPT”? The Surprising Dominance of Large Factor Models

Theorem

Suppose that in the limit, as P → ∞, the vector of latent risk premia λF

satisfies

λ′
FAλF → 0 (39)

for any symmetric, positive definite A with uniformly bounded trace. Let

MF
t+1 = 1− λ′Ft+1, (40)

be the factor approximation for the SDF with λ. Then, MF
t+1 converges

to Mt+1 and the Sharpe ratio of λ′Ft+1 converges to that of W (St)
′Rt+1

as P → ∞. In particular,

Et [M
F
t+1Rt+1] → 0
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Sources of Complexity i

▶ We now know: If

Rt+1 = St︸︷︷︸
Nt×P signals

F̃t+1︸︷︷︸
P×1 latent factors

+ εt+1︸︷︷︸
residuals

(41)

then we build

Ft+1 = S ′
tRt+1 = (S ′

tSt)F̃t+1 + (S ′
tεt+1) (42)

▶ But where do St come from?

▶ Suppose

Ri ,t+1 = β(Xi ,t)
′Gt+1 + ui ,t+1, (43)
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Sources of Complexity ii

▶

β(Xi ,t) ≈
P∑

p=1

ξp Si ,t,p = ξ′ Si ,t︸︷︷︸
P×1

, (44)

where

Si ,t = (σ(ω′
pXi ,t))

P
p=1 . (45)

▶ This gives

Rt+1︸︷︷︸
N×1

≈ St︸︷︷︸
N×P

F̃t+1︸︷︷︸
P×1

+ut+1, with

F̃t+1 = ξ︸︷︷︸
P×1

Gt+1, ν = E [F̃t+1] = ξ E [Gt+1] .
(46)

▶ If β is highly non-linear, we need to go for a high-dimensional St
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Sources of Complexity iii

▶ The true SDF return is

(βtβ
′
t +Σu)

−1βtE [Gt+1] =︸︷︷︸
Sherman−Morrison

Σ−1
u βtE [Gt+1]

1

1 + β′
tΣ

−1
u βt

(47)

In high dimensions, β′
tΣ

−1
u βt ≈ const. Furthermore, if βt are sufficiently

complex, Σ−1
u βt ≈ constβt . Thus, we end up with

πt ∼ βt = St ξ (48)

and the SDF is

π′
tRt+1 = ξ′︸︷︷︸

factor weights

S ′
t Rt+1︸ ︷︷ ︸
Ft+1

. (49)
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Complexity in the Cross Section: A Brief History i

▶ Most academic attempts to build an SDF assume

M⋆
t+1 = 1−

N∑
i=1

w(Xi,t)Ri,t+1 (50)

▶ Cross-sectional asset pricing is about wt = w(Xt)

• Explains differences in average returns
• Defines the MVE portfolio

▶ Why does cross-section literature rarely start here? Because w must be

estimated

• This is a high-dimensional (complex) problem
• We know: In-sample tangency portfolio behaves horribly out-of-sample
• Why? Complexity (n/T ̸→ 0) → LLN doesn’t apply → IS and OOS

diverge
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Complexity in the Cross Section: A Brief History ii

▶ Standard solution: Restrict w

• E.g., Fama-French: wi,t = b0 + b1Sizei,t + b2Valuei,t (Brandt et

al. 2007 generalize):

N∑
i=1

w(Xi,t)Ri,t+1 =
N∑
i=1

(b0 + b1Sizei,t + b2Valuei,t)Ri,t+1

= b0

N∑
i=1

Ri,t+1 + b1

N∑
i=1

Sizei,tRi,t+1 + b2

N∑
i=1

Valuei,tRi,t+1

= b0MKTt+1 + b1SMBt+1 + b2HMLt+1 .

(51)

• Reduces parameters, implies factor model:

Mt+1 = 1− b0MKT − b1SMB − b2HML
• “Shrinking the cross-section” Kozak et al. (2020) — use a few PCs of

anomaly factors
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Complexity in the Cross Section: Machine Learning

Perspective i

Rather than restricting w(Xt)....

▶ ...expand parameterization, saturate with conditioning information

▶ For example, approximate w with neural network: w(Xi,t) ≈ λ′Si,t

▶ P × 1 vector Si,t is known nonlinear function of original predictors Xi,t

wi,t=λ′Si,t

Si,t (k)=fk (Xi,t )

Xi,t
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Complexity in the Cross Section: Machine Learning

Perspective ii

▶ Implies that empirical SDF is a high-dimensional factor model

N∑
i=1

w(Xi,t)Ri,t+1 =
N∑
i=1

(
∑
k

λk Si,t(k))︸ ︷︷ ︸
Si,t(k)=fk (Xi,t)

Ri,t+1 =
∑
k

λk

N∑
i=1

Si,t(k)Ri,t+1︸ ︷︷ ︸
Fk,t+1

=
∑
k

λkFk,t+1

(52)

M⋆
t+1 ≈ Mt+1 = 1− λ′S ′

tRt+1 = 1− λ′Ft+1
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Complexity in the Cross Section: Machine Learning

Perspective i

The Objective:

▶ Maximize out-of-sample Sharpe ratio (equivalently, minimize out-of-sample

pricing errors) of SDF

The Choice:

▶ Fix T data points. Decide on “complexity” (number of factors P) to use in

approximating model

The Tradeoff:
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Complexity in the Cross Section: Machine Learning

Perspective ii

▶ Simple SDF (P << T ) has low variance (thanks to parsimony) but is a poor

approximator of w

▶ Complex SDF (P > T ) is a good approximator but may behave poorly (and

requires shrinkage)

▶ Which P should the analyst opt for? Does the benefit of more factors justify

their cost?

Answer:

▶ Use the largest factor model (largest P) that you can compute
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Implementation i

▶ Build a bunch of features (random features if you want a shallow

model; deep features (output layer) if you want a deep model).

▶ Call them Si ,t(k) = fk(Xi ,t ; θk), k = 1, · · · ,P
▶ Build the factors

Ft+1(k) =
Nt∑
i=1

Si ,t(k)Ri ,t+1 (53)

▶ Take the vector of factors Ft+1 = (Ft+1(k))
P
k=1 and minimize

min
λ

1

T

T∑
t=1

(1− λ′Ft+1)
2 + z ∥λ∥2 (54)

This objective is known as the Maximal Sharpe Ratio Regression

(MSRR). For a deep model, you need to minimize this objective

using GD
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Implementation ii

▶ Why MSRR? Well,

1

T

T∑
t=1

(1− λ′Ft+1)
2 ≈ E [(1− λ′Ft+1)

2]

= 1− 2E [λ′Ft+1] + E [(λ′Ft+1)
2] = 1 − 2E [U(λ′Ft+1)],

(55)

where

U(x) = x − 0.5x2

▶ Now, π̃t = Et [Rt+1R
′
t+1]

−1Et [Rt+1] solves

max
π

Et [U(π′
tRt+1)] (56)
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Implementation iii

It is conditionally efficient for a quadratic utility. By the law of

iterated expectations,

E [Et [U(π′
tRt+1)]] = E [U(π′

tRt+1)]

and dynamic consistency gives

max
all policies πt

E [U(π′
tRt+1)] = E [max

π
Et [U(π′

tRt+1)]

▶ Thus, MSRR looks for conditional policies that maximize

unconditional utility and hence, by consistency, are conditionally

optimal.
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RMT i

▶

λ̂(z) =

(
zI +

1

T

T∑
t=1

FtF
′
t

)−1
1

T

T∑
t=1

Ft ̸≈︸︷︷︸
Complexity !

λ∗(z) (57)

where

λ∗(z) = (zI + E [FF ′])−1E [F ] (58)
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RMT ii

▶ Leave-One-Out (LOO):

Ψ̂ =
1

T

T∑
τ=1

FτF
′
τ

Ψ̂T ,t =
1

T

T∑
τ ̸=t

FτF
′
τ

(zI + Ψ̂)−1Ft =
(
zI + Ψ̂T ,t

)−1
Ft

1

1 + T−1F ′
t

(
zI + Ψ̂T ,t

)−1
Ft

(59)
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RMT iii

▶ Define the Stieltjes Transform

m̂(−z) = P−1 tr((zI + Ψ̂)−1) (60)

and

Ẑ∗(z ; c) =
z

1− c + czm̂(−z)
. (61)

and

ξ̂(z ; c) = −1 +
1

1− c + czm̂(−z)
. (62)

We have

1/Z∗(z ; c) = limT−1 tr((zI + FF ′/T︸ ︷︷ ︸
T×T

)−1) . (63)
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RMT iv

▶ Lemma

T−1F ′
t

(
zI + Ψ̂T ,t

)−1
Ft ≈ ξ̂(z ; c) (64)

▶ Implicit Regularization

E [λ̂(z)′FT+1] ≈ Z∗(z)

z
E [λ∗(Z∗(z))

′FT+1] , (65)

where

Z∗(z) > z . (66)

▶ In fact,

ET [λ̂(z)
′FT+1] =

Z∗(z)

z
ET [λ∗(Z∗(z))

′FT+1]

=
Z∗(z)

z
λ∗(Z∗(z))

′E [F ] =
Z∗(z)

z
E [F ]′(Z∗(z)I + E [FF ′])−1E [F ]

(67)
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The RMT Master Theorem

Theorem

P−1z tr(AP(zI + Ψ̂︸︷︷︸
random

)−1) − P−1Z∗ tr(AP(Z∗I + Ψ︸︷︷︸
deterministic

)−1) → 0

(68)

almost surely.

Similarly, for any sequence of uniformly bounded vectors β, we have

zβ′(zI + Ψ̂︸︷︷︸
random

)−1β − Z∗β
′(Z∗I + Ψ︸︷︷︸

deterministic

)−1β → 0 (69)
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The Expected Return Calculation i
Proof.

Let E [F ] = µ, E [FF ′] = Ψ; everything is i.i.d. across t. Then,

E [λ̂(z)′FT+1] = E [λ̂(z)′µ] = E [
1

T

T∑
t=1

F ′
t

(
zI +

1

T

T∑
t=1

FtF
′
t

)−1

]µ

=︸︷︷︸
symmetry

E [F ′
t

(
zI +

1

T

T∑
t=1

FtF
′
t

)−1

]µ

= E

F ′
t (zI +ΨT ,t)

−1 1

1 + T−1F ′
t

(
zI + Ψ̂T ,t

)−1
Ft

µ

≈︸︷︷︸
Ft is independent

µ′E [
(
zI + Ψ̂T ,t

)−1
]µ(1 + ξ(z ; c))−1

(70)
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The Expected Return Calculation ii
Proof.

where

Ψ̂T ,t =
1

T

T∑
τ=1

FτF
′
τ − FtF

′
t

where we have used that

T−1F ′
t

(
zI + Ψ̂T ,t

)−1
Ft ≈ ξ(z ; c) (71)

The claim follows now from the Master Theorem:

z µ′
(
zI + Ψ̂T ,t

)−1
µ ≈ Z∗ (Z∗I +Ψ)−1 (72)
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LLG

The Limits-to-Learning Gap (LLG)

L(z ; c) =
d

dz
Z∗(z ; c) − 1︸ ︷︷ ︸

LLG

= lim
T−1 tr((zI + FF ′/T )−2)

(T−1 tr((zI + FF ′/T )−1))2
− 1 (73)

is always in [0,T − 1].

Theorem

µ′Σ−1µ︸ ︷︷ ︸
infeasible SR

≥ (1 + L(z ; c)) SR2
OOS(λ̂(z))︸ ︷︷ ︸

feasible OOS SR

(74)
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Empirical Analysis

▶ Analyze empirical analogues to theoretical comparative statics

▶ Study conventional setting with conventional data

• Forecast target is monthly return of US stocks from CRSP 1963–2021
• Conditioning info (Xt) is 130 stock characteristics from Jensen, Kelly,

and Pedersen (2022)

▶ Out-of-sample performance metrics are:

• SDF Sharpe ratio
• Mean squared pricing errors (factors as test assets)
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Empirical Analysis i
Random Fourier Features

▶ Empirical model: Mt+1 = 1− λ′S ′
tRt+1

▶ Need framework to smoothly transition from low to high complexity

▶ Adopt ML method known as “random Fourier features” (RFF)
• Let Xi,t be 130× 1 predictors. RFF converts Xi,t into

Sℓ,i,t = sin(γ′
ℓXi,t), γℓ ∼ iidN(0, γI )

• Sℓ,i,t : Random lin-combo of Xi,t fed through non-linear activation
• we then rank the random features in the cross-section

▶ For fixed inputs can create an arbitrarily large (or small) feature set
• Low-dim model (say P = 1) draw a single random weight
• High-dim model (say P = 10,000) draw many weights

▶ In fact, RFF is a two-layer neural network with fixed weights (γ) in

the first layer and optimized weights (λ) in the second layer
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Empirical Analysis
Training and Testing

▶ We estimate out-of-sample SDF with:

i. Thirty-year rolling training window (T = 360)

ii. Various shrinkage levels, log10(z) = −12, ..., 3

iii. Various complexity levels P = 102, ..., 106

▶ For each level of complexity c = P/T , we plot

i. Out-of-sample Sharpe ratio of the kernels and

ii. Pricing errors on 106 “complex” factors: Ft+1 = S ′
tRt+1

▶ Also report Sharpe ratio and pricing errors of FF6 to benchmark our results
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Out-of-sample SDF Performance
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Main Empirical Result

▶ OOS behavior of ML-based SDF

closely matches theory

▶ High complexity models

• Improve over simple models

by a factor of 3 or more
• Dominate popular benchmarks

like FF6

Asset Pricing and ML 53



SDF Performance in Restricted Samples: Sharpe Ratio
Market Capitalization Subsamples
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What About “Shrinking” With PCA?

K = 5 K = 10 K = 25
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Beyond Own-Signal Portfolios i

All portfolio strategies we have used so far use own-signal weights:

πi ,t = w(Si ,t) =
∑
k

λk fk(Xi ,t)

where λk are estimated through Markowitz.
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Beyond Own-Signal Portfolios ii

In Artificial Intelligence Pricing Models, we show how to build strategies

that use other stocks’ information. The insight is simple: Instead of

πt = Stλ,

we do

πt = At Stλ︸ ︷︷ ︸
one transformer block

where

At = F (StMS ′
t)

is the attention matrix, and F is a non-linear transformation.

You can repeat this trick many times, making the attention deeper.

Asset Pricing and ML 57

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5089371


Beyond Own-Signal Portfolios iii

Figure: Virtue of complexity for K -block transformer portfolios.
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Experiments with Managed Portfolios

Managed Portfolios Notebook
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