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1 Mean-Variance Optimization




Mean-Variance Optimization: Unconditional i

» assets i = 1,---, N have prices P;; and excess returns
Pit+1+ Ditt1
R;7t+1 = ’P—7 - Rf,t (1)
i,t N~~~

risk free rate

» if you invest fraction 7; ; of your wealth W; into security 7, the rest
stays on your bank account and grows at the rate Ry ; :

We = Z it We + (Wt_zﬂi,twt) (2)

investment in stock i

bank account




Mean-Variance Optimization: Unconditional ii

and then you sell your investments at time t and collect dividends so

that
Pit+1+ Dea
Wip1 = ZWtWi,t% + (Wt—zﬂi,tWt)Rf,t
" " 3)
= WiRf: + Wtzﬂi,tRi,tH
i
> Thus, the excess return on your wealth is
Wi i1
Vt‘;: — R = Zﬂ'i,tRi,tJrl = mRey1 (4)

1

» Thus, we want 7; that gives good returns. But what is the criterion?



Mean-Variance Optimization: Unconditional iii
> Intuitively, we like high return and low variance, hence, we might
try to find a static portfolio that maximizes

T = argmax <E[7T/Rt+]_] - 05 v Var[W/RtJrl]) (5)
w —

risk aversion

» The solution is Markowitz
m = y ‘Var[R]"! E[R]. (6)
P Alternatively, one could optimize

7 = argmax (E[w’RtH] ~ 05 7 E[(W’Rt+1)2]) (7)

risk aversion



Mean-Variance Optimization: Unconditional iv

and the solution is

# = 7 HE[Re1R41]) " E[Reta]
1 (8)

= const - T, const =
14 E[Rt+1]’Var[Rt+1]_1E[Rt_H]

where

E[Re1Ri 1] = Var[Repa] + E[Res1]E[Re+1] = (E[Rie+1Re1])l e
(9)




Why Are the Two Markowitz Portfolios Proportional? The
Sherman-Morrison formula i

The magic behind is the

Lemma (Sherman-Morrison formula)

_ _ AL/ A7L
(A-i-XX/) 1 — A1 m (10)
and At
_ X
(A+x)"Ix = T A Ix (11)

Proof[Proof of the Sherman-Morrison formula] Recall that
x' = (xx)N

ij=1



Why Are the Two Markowitz Portfolios Proportional? The
Sherman-Morrison formula ii

is a symmetric, positive, semi-definite, rank — 1 matrix (all columns are

proportional to x). Then,

A lxx'A-1
A / A—l _
(e 1+X’A_1X)
xx' A1 S JAT AT
== 1+ x'A1x H 0l AT - 1+ x'A-1x (12)
xx' A1 il L1 XATIx
— “l_ Al Xy
/ 1+x’A*1x+XXA XX T A Tx
and
B - A lxx’A-1 A-1x
(A+x)Ix = (A1 - )x = T+ AT (13)




(Very Big) Issues with Markowiz

» Markowitz assumes that we know the truth! The true
E[R] = (E[Rirqal);, Var[R] = (Cov(Rie1, Rieyn))ly (14)

where N; is the number of assets (stocks?) available at time t.
» The problem is that:
® expected stock returns move a lot over time: Hence, using static
portfolio is a very bad idea

® we just do not have enough data to estimate E[R] and Var[R]. We
can use naive

_ 1 L . 1 < _ _
EIR] = =Y Re, Var[R] = = (R — E[R]) (R. — E[R])
t=1

t=1 Nx1 IxN

NxN



Incorporating Conditional Information: The conditional
Markowitz i

We would like to incorporate conditional information.

> mean-variance optimization:

T¢ = argmax (Et[rr’thH] - 05 ~ Vart[ﬂ’thH]) (15)
e ——

risk aversion

and hence the Mean-Variance Efficient (MVE) portfolio is

-1 -1
" =77 (Var¢[Re41]) Et[Re41]
~— ~———— ———
conditional tangency portfolio NxN covariance matrix Nx1 expected returns

(16)



Incorporating Conditional Information: The conditional
Markowitz ii

» Similarly,

Fe = argmax (Et[ﬂ’RtH] — 05~ Et[(ﬂ’RtH)z]) (17)

risk aversion

is given by
T = 'Y_l(Et[RtnLlRt/‘-s-l])_l Et[Rt+l]
1 (18)
= T
1+ E¢[Res1] Vare[Rer1] LE[Res]
where

Ee[Ret1Riq] = VarRes1] + Ee[Repa]Ee[Res1]  (19)



Incorporating Conditional Information: The conditional
expectation i

» We would need
Ei[Rey1] = arg F:RVQLHRN E[|Re+1 — F(S)II°]

Et[Rt+1R£+1] = argG min NE[HRtJrlRéﬂ—G(St)Hz]

RP RN

» The reality is that we still cannot compute E[:| because we do not
have enough data. So, we will still be doing

1
Ee[Xev1] = arg min — Zt: [ Xer1 — F(St)? (21)
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2 Introduction: Complexity in Cross-Sectional Asset Pricing




Intoduction to Asset Pricing i

» | promised Asset Pricing, but we did Markowitz instead. Why?

» Intuitively, we expect that

Pit = (Rfe) ™ Ee[Pits1 + Dieya] (22)

Definitely wrong in the data

because the discount factor (R ;)~! is too naive

» We need a smart discount factor (SDF):

P = & Mz t41 (Pit+1+ Dit41)] (23)
~——

stochastic discount factor



Intoduction to Asset Pricing ii

> with a bit of algebra, this is equivalent to

Et[Ri,t+1 Mt,t—i—l] =0 (24)
and

Et[Mt,t+1] = RE:

N’

scale of the SDF

» By direct calculation,
Mt+1 = ]. - %éRt—i-l (25)
does the job:

Ei[RetaMr 1] = Et[Rep1 (1 — Riyq1fe)]
= E[Ret1] — E[Ret1Riq] e = 0



Intoduction to Asset Pricing iii

implies
e = Ee[Ret1Riya] ™" Ee[Reta] (27)

We now state

Theorem

Nothing Has Alpha Against 7, Ry41




Implications for Testing “If we have found a new, useful
strategy”

» If we have found the true, ultimate 7;, nothing has alpha against it:
If you have some other portfolio & and run the regression

§Rey1 = a + PRy + erq1.

P> If « is not significant, reject the strategy &;, move somewhere else.

> if « is significant, the 7; is not efficient and you should try combining

it with 7;




Testing Conditional Efficiency

» We cannnot compute E;[']

» Instead, we can build instruments Z; and test that
EiMit1Rit1] = 0 & E[ZeMipiReya] = 0

for all instruments!

» Thus, we need to build infinitely many Z; thought machine learning
and then test

1
724 Mit1Rey1 = 0
t

Complexity is always there!



From Non-Tradable to Tradable SDFs i

» What about asset pricing theory?
» the SDF

=IMRS
comes from the Euler equation (things get more complex with
Epstein-Zin preferences, expectations, sentiments, etc)

e U (Cey1)
U'(Ce)

=IMRS

E: (Re+1+ Ree)] = 1 & Ee[Mey1Rei1] = 0 (28)

because
Ree = E[Mea] ™t (29)



From Non-Tradable to Tradable SDFs ii

» When markets are complete,
M1 proportional to I\7It+1

and the proportionality constant can be pinned down by

MH-I

My = — 1
LT R E[Megq]

» The normalization ensures that

Ed[Mep1] = R;} (31)




From Non-Tradable to Tradable SDFs iii

» In general, we need to project

Mt+1

——2 - = Proj,(M = i Y _/ 2
Rr ¢ Eo[Mer1] roje(Mey1) = arg Ly Ei[(Mey1—a(1—7 Rey1))7]
~—— ———

unique tradable

(32)

» solution is

1
B Rf,tEt[Mt+1]
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3 Empirical Asset Pricing Via Machine Learning




Panel Datasets: Leveraging the Power of Big Data i

» Now comes the big question: How do we measure the conditional
expectations, E¢[R;11] and E[Rey 1R, 1]?

» Running prediction models per stock is infeasible due to insufficient

data:
EiRitr1] = &i(Xit)
bad idea
» use panel data
EiRity1] =, &(Xie)
good idea

» panel means same function g for all stocks.
» non-linear g means machine learning

» What about the covariance matrix? How do we model a

time-varying covariance structure?



Panel Datasets: Leveraging the Power of Big Data ii

» Typically, we assume a factor structure:

Rt+]_ = S Ft+1 + €t+1

factor exposures fictors

» In reality, factor exposures are time-varying:
Riv1 = StFey1 + €1
» If Cov¢[Fit+1] = XF and
Covilers1] = diag(a%t), oi+ = Idiosyncratic volatility
so that the Conditional covariance matrix is given by

Et[Rt+1R;-+1] - SZ'ZFSI‘ + dlag(a?,t)



Panel Datasets: Leveraging the Power of Big Data iii

> Equivalently:

/ 2
Ei(Rit+1Rje+1] = SitTFSjt + 0ijO7 ¢
—_———— ——
systematic covariance idiosyncratic variance

where Y ¢ and o} ; are to be estimated.

> Can we avoid computing the conditional covariance matrix?




Managed Portfolios and Rich Conditional Factor Structures i

» Suppose
p =
Ritv1 = 5,'7t o Fii1 + €itt1
~—~—
conditional betas  latent factors
>
Et[ﬁt+]_] = )\F Et[ﬁt+1ﬁ, ] == Z
t+1 F
~— ’ + ~—
latent factor risk premia latent factor cov
» Thus,
Et[Rt—H] = St)\F
and

Ei[RetaRiq] = SiXeSi+Ze



Managed Portfolios and Rich Conditional Factor Structures ii

>
Miyr = 1=7Rip1= 1 — W(S:)'Reyr, (33)

where 71, = Et[RtHR;H]_lEt[RtH] and, hence,

W(S:) = (S:ZF:Si+ %)t SiAF (34)

conditional covariance conditional expectation

» Define managed portfolios
Fit1 = SiRes1. (35)
and the unconditionally efficient portfolio
A = E[Fey1Fl1] T E[Fesa] (36)



Managed Portfolios and Rich Conditional Factor Structures iii

» By construction,
MFi=1-NF (37)

prices factors unconditionally:

E[MFt+1Ft+1] =0 (38)
» However,
E(MF i1 1Res1] # 0
because
NSIRii1 # M SIE 7 Regn,
with

Zt = (StzF7t52+Z€)



Click on this link to know more:

APT or “AIPT"? The Surprising Dominance of Large Factor Models

Theorem

Suppose that in the limit, as P — oo, the vector of latent risk premia A
satisfies

FANE — 0 (39)
for any symmetric, positive definite A with uniformly bounded trace. Let
MFer1 =1—NFey, (40)

be the factor approximation for the SDF with \. Then, M" .1 converges
to M;y1 and the Sharpe ratio of \'F;1 converges to that of W(S;) Ry11
as P — oo. In particular,

EM’ 41Re41] — 0


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4388526

Sources of Complexity i

» We now know: If

Ret1 = S F TR 41
t+ \,t./ t+1 t+1 ( )
Nt x P signals Px1 latent factors residuals
then we build
Fer1 = SiRe1i = (SiSt)Fer1 + (Siersn) (42)

» But where do S; come from?

» Suppose
Rit+1 = B(Xit) Ger1 + Ui et1, (43)



Sources of Complexity ii

>
P
BXi) = > &Sitp = & Sit, (44)
p=1 ?"/
x1
where
Sit= (a(w;,X,-,t))f;:l . (45)
» This gives

Ret1~ St Fepr+upy, with

N~ SN N

Nx1 NxP Px1

Fiyi= €& Gryr, v = E[Fepa] = E[Gepa].
~—
Px1

(40)

» If 3 is highly non-linear, we need to go for a high-dimensional S;



Sources of Complexity iii

» The true SDF return is

1

1+ Byt Be
(47)

(BeB: + Zu) ' BE[Gry1] = ¥, BeE[Gesa]

Sherman— Morrison

In high dimensions, 3,X,13: ~ const. Furthermore, if 3; are sufficiently
complex, ¥, 13 ~ constf3;. Thus, we end up with

T ~ /Bt = Stf (48)

and the SDF is
7T/th+1 = fl 5; Rt+1 . (49)
—~—~ ——

factor weights  Fy



Complexity in the Cross Section: A Brief History i

» Most academic attempts to build an SDF assume

w(X; t)Rit+1 (50)

M=

*
t+1 — 1-
i=1

> Cross-sectional asset pricing is about w; = w(X;)
® Explains differences in average returns
® Defines the MVE portfolio
» Why does cross-section literature rarely start here? Because w must be
estimated

® This is a high-dimensional (complex) problem
® \We know: In-sample tangency portfolio behaves horribly out-of-sample
® Why? Complexity (n/ T +# 0) — LLN doesn’t apply — IS and OOS

diverge



Complexity in the Cross Section: A Brief History ii

» Standard solution: Restrict w

® E.g., Fama-French:  w;; = by + b1Size; ; + boValue;;  (Brandt et
al. 2007 generalize):

N N
> w(Xi)Riesr = > _(bo+ biSizej ¢ + byValuej ¢)Ri 41
i=1 i=1
N N N (51)
= by Z Ritr1 + by Z Sizej +Ri t+1 + b Zvaluei,tRi,tJrl
=] =] =]

= boMKTyi1 + biSMBei1 + byHML,ys .

® Reduces parameters, implies factor model:
Mii1 =1— bgMKT — by SMB — b HML

® “Shrinking the cross-section” Kozak et al. (2020) — use a few PCs of
anomaly factors



Complexity in the Cross Section: Machine Learning
Perspective i

Rather than restricting w(X})....

> ...expand parameterization, saturate with conditioning information

» For example, approximate w with neural network: W(X,-J) = XS,-J

> P x 1 vector S;; is known nonlinear function of original predictors X; ¢




Complexity in the Cross Section: Machine Learning
Perspective ii

» Implies that empirical SDF is a high-dimensional factor model

N
Rity1 = Z Z M Sie(k)) Ritp1 = zk:/\k;&,t(k)/?i,tﬂ

i=1 i=1 k
Si,e(k)=fie(Xi,¢)

INE
§

Fr,e41

(52)

M;(+1 ~ Mt+1 = ]. - A/5£Rt+1 = ]. - )\IFt+1




Complexity in the Cross Section: Machine Learning
Perspective i

The Objective:

» Maximize out-of-sample Sharpe ratio (equivalently, minimize out-of-sample
pricing errors) of SDF

The Choice:

» Fix T data points. Decide on “complexity” (number of factors P) to use in

approximating model

The Tradeoff:



Complexity in the Cross Section: Machine Learning
Perspective ii

» Simple SDF (P << T) has low variance (thanks to parsimony) but is a poor
approximator of w

» Complex SDF (P > T) is a good approximator but may behave poorly (and
requires shrinkage)

» Which P should the analyst opt for? Does the benefit of more factors justify
their cost?

Answer:

> Use the largest factor model (largest P) that you can compute




Implementation i

» Build a bunch of features (random features if you want a shallow
model; deep features (output layer) if you want a deep model).

» Call them S; ¢(k) = fi(Xi;0k), k=1,---,P

» Build the factors

N
Fera(k) = D Sit(K)Rier (53)
=il

» Take the vector of factors Fri1 = (Fey1(k))E_; and minimize
1T
min — ;(1 — XNFea)® + z|AP (54)
This objective is known as the Maximal Sharpe Ratio Regression
(MSRR). For a deep model, you need to minimize this objective
using GD



Implementation ii

» Why MSRR? Well,

.
Z (1—NFei1)? = E[(1 = NFey1)?]

(55)
- 1—2E[)\’Ft+1] +E[(NFi1)?] = 1 — 2E[UN Fes)l,
where
U(x) = x —0.5x°
» Now, 77y = Et[RtHR;H]_lEt[RtH] solves
max E¢[U(m¢ Rey1)] (56)



Implementation iii

It is conditionally efficient for a quadratic utility. By the law of

iterated expectations,
E[E[U(mtRe+1)]] = E[U(m¢Re+1)]
and dynamic consistency gives

max  E[U(m}Ri+1)] = E[mfx E:[U(m,Re11)]

all policies ¢

» Thus, MSRR looks for conditional policies that maximize
unconditional utility and hence, by consistency, are conditionally
optimal.



RMT i

T -1 T
t=1 =

Complexity!

where

M(z) = (zI + E[FF'])1E[F] (58)




RMT ii

» Leave-One-Out (LOO):
1 T
U= =N FF
e

1
0 2 : /
wT,t = = ;ét FTFT

A A -1 1
(Z/ + \U)ilFt = (ZI + ‘UTJ-) Ft

~ —1
1+ T-1F <zl + wtt) F.
(59)




RMT iii

» Define the Stieltjes Transform

m(—z) = P Ltr((zl + W)™Y) (60)
and z
4lzic) = 1—c+czm(-z)" (61)
and |
Szic) = -1+ 1—c+czm(—z)" (62)
We have
1/Z,(z;¢) = lim T Ytr((zl + FF'/T)7Y). (63)



RMT iv

» Lemma .
T-LF! (z/+\TfT,t) Fo ~ &(z;c) (64)
» Implicit Regularization
3@ Fral ~ 22 e z@yFral. ()
where
Z(z) > z. (66)
» |n fact,
Erf\@) Fral = 22 ez ) Froal
= Z*Z(Z))\*(Z*(z))’E[F] = Z*ZZ)E[F]’(Z*(Z)H—E[FF’])_lE[F]

(67)
D e



The RMT Master Theorem

Theorem

P lztr(Ap(zl + W )Y —P1Ztr(Ap(ZJ+ W )Y =0
random deterministic

(68)
almost surely.

Similarly, for any sequence of uniformly bounded vectors (3, we have

zB' (2l + )18 — Z.B(Z + Y )18 — 0 (69)

W
—~—

random deterministic




The Expected Return Calculation i
Proof.

Let E[F] = u, E[FF'] = V; everything is i.i.d. across t. Then,

T -1
ER@) Fral = ER@) Z F! <z/ Y Ftﬁ') I
t=1
-1

1

symmetry
/ =il 1l
= E Ft (ZI + WTJ_-) ~ =l
1+ TR (2 +¥7,) R

& WEI(A+ ) e )

F: is independent

1

(70)
et Pricingand ML



The Expected Return Calculation
Proof.

where

;
A 1
Ur, = TZ;FTF; — F:F]

where we have used that

~ 1
T-LF! <z/+wm) Fo ~ &(z;c)

The claim follows now from the Master Theorem:

zu (zl + \TJT,t)

. —1
wor Zo(Zd + W)




LLG

The Limits-to-Learning Gap (LLG)

T Ytr((zl + FF'/T)7?)
(T-1tr((zl + FF'/T)1))

L(z;c) = %Z*(z; c) — 1 =lim 5 — 1 (73)

LLG
is always in [0, T —1].

Theorem

'Yl > (14 £L(z;¢)) SR3ps(A 74
P > ( (zi ¢)) SRo0s(A\(2)) (74)
infeasible SR feasible OOS SR
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4 Empirics for the US Stock Market




Empirical Analysis

» Analyze empirical analogues to theoretical comparative statics
» Study conventional setting with conventional data

® Forecast target is monthly return of US stocks from CRSP 1963-2021
® Conditioning info (X;) is 130 stock characteristics from Jensen, Kelly,
and Pedersen (2022)

» Out-of-sample performance metrics are:

® SDF Sharpe ratio
® Mean squared pricing errors (factors as test assets)




Empirical Analysis i

Random Fourier Features

» Empirical model: My11 =1 — NS[Rii1

> Need framework to smoothly transition from low to high complexity

\4

Adopt ML method known as “random Fourier features” (RFF)
® let Xi: be 130 x 1 predictors. RFF converts X ; into

Seie = sin(7eXi,t), e ~ iidN(0, y1)
® S;i+: Random lin-combo of X . fed through non-linear activation
® we then rank the random features in the cross-section

» For fixed inputs can create an arbitrarily large (or small) feature set

® Low-dim model (say P = 1) draw a single random weight
® High-dim model (say P = 10,000) draw many weights

» In fact, RFF is a two-layer neural network with fixed weights (7) in
the first layer and optimized weights () in the second layer



Empirical Analysis
Training and Testing

> We estimate out-of-sample SDF with:

i. Thirty-year rolling training window (T = 360)
ii. Various shrinkage levels, log;o(z) = —12,...,3
iii. Various complexity levels P = 102, ..., 10°

» For each level of complexity ¢ = P/ T, we plot

i. Out-of-sample Sharpe ratio of the kernels and
ii. Pricing errors on 10° “complex” factors: Fyy1 = S/Riy1

» Also report Sharpe ratio and pricing errors of FF6 to benchmark our results




Out-of-sample SDF Performance

.9 4.0
2 P—
T 35
m '/// - - .
g y Main Empirical Result
E Z:D //// -
B ous V » OOS behavior of ML-based SDF
w0 — closely matches theory
e e » High complexity models

— = ® |mprove over simple models

- by a factor of 3 or more
— z=1000
-5 ® Dominate popular benchmarks

Pricing Error

0 J k like FF6
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What About “Shrinking” With PCA?
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Beyond Own-Signal Portfolios i

All portfolio strategies we have used so far use own-signal weights:

mir = w(Si¢) = Z)\kfk(xi,t)
K

where A\, are estimated through Markowitz.




Beyond Own-Signal Portfolios ii

In Artificial Intelligence Pricing Models, we show how to build strategies
that use other stocks' information. The insight is simple: Instead of

e = St
we do
Tt — At St)\
——
one transformer block
where

is the attention matrix, and F is a non-linear transformation.

You can repeat this trick many times, making the attention deeper.


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5089371

Beyond Own-Signal Portfolios

Figure: Virtue of complexity for K-block transformer portfolios.
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Experiments with Managed Portfolios

Managed Portfolios Notebook



https://colab.research.google.com/drive/10GsMup6ugNh4uJc48kk99U48bm_BZsqJ
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